Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why some planets orbit the wrong way; extrasolar insights into our solar system

12.05.2011
NSF-funded research in physics and astronomy yields unexpected results

More than 500 extrasolar planets--planets that orbit stars other than the sun--have been discovered since 1995. But only in the last few years have astronomers observed that in some of these systems, the star is spinning one way and the planet is orbiting that star in the opposite direction.


A retrograde hot Jupiter: the transiting giant planet orbits very close to the star and in a direction opposite to the stellar rotation. This peculiar configuration results from gravitational perturbations by another much more distant planet (upper left). Credit: Lynette Cook

"That's really weird, and it's even weirder because the planet is so close to the star," said Frederic A. Rasio, a theoretical astrophysicist at Northwestern University. "How can one be spinning one way and the other orbiting exactly the other way? It's crazy. It so obviously violates our most basic picture of planet and star formation."

The planets in question are typically huge planets called "hot Jupiters" that orbit in very close proximity to their central star. Figuring out how these huge planets got so close to their stars led Rasio and his research team to also explain their flipped orbits. Details of their discovery are published in the May 12th issue of the journal Nature.

"And this discovery is a broader impact of NSF's MRI program support for the acquisition of a computer cluster" said Beverly Berger, an NSF Gravitational Physics Program director. Using it, and performing large-scale computer simulations, Rasio researchers became the first to model how a hot Jupiter's orbit can flip and go in the direction opposite to the star's spin. Gravitational perturbations by a much more distant planet result in the hot Jupiter having both a "wrong way" and a very close orbit.

"Once you get more than one planet, the planets perturb each other gravitationally," Rasio said. "This becomes interesting because that means whatever orbit they were formed on isn't necessarily the orbit they will stay on forever. These mutual perturbations can change the orbits, as we see in these extrasolar systems."

In explaining the peculiar configuration of an extrasolar system, the researchers also have added to our general understanding of planetary system formation and evolution and reflected on what their findings mean for the solar system.

"We had thought our solar system was typical in the universe, but from day one everything has looked weird in the extrasolar planetary systems," Rasio said. "That makes us the oddball really. Learning about these other systems provides a context for how special our system is. We certainly seem to live in a special place."

The physics the research team used to solve the problem is basically orbital mechanics, Rasio said, the same kind of physics NASA uses to send satellites around the solar system.

"It was a beautiful problem," said Naoz, "because the answer was there for us for so long. It's the same physics, but no one noticed it could explain hot Jupiters and flipped orbits."

"Doing the calculations was not obvious or easy," Rasio said, "Some of the approximations used by others in the past were really not quite right. We were doing it right for the first time in 50 years, thanks in large part to the persistence of Smadar."

"It takes a smart, young person who first can do the calculations on paper and develop a full mathematical model and then turn it into a computer program that solves the equations," Rasio added. "This is the only way we can produce real numbers to compare to the actual measurements taken by astronomers."

In their model, the researchers assume a star similar to the sun, and a system with two planets. The inner planet is a gas giant similar to Jupiter, and initially it is far from the star, where Jupiter-type planets are thought to form. The outer planet is also fairly large and is farther from the star than the first planet. It interacts with the inner planet, perturbing it and shaking up the system.

The effects on the inner planet are weak but build up over a very long period of time, resulting in two significant changes in the system: the inner gas giant orbits very close to the star and its orbit is in the opposite direction of the central star's spin. The changes occur, according to the model, because the two orbits are exchanging angular momentum, and the inner one loses energy via strong tides.

The gravitational coupling between the two planets causes the inner planet to go into an eccentric, needle-shaped orbit. It has to lose a lot of angular momentum, which it does by dumping it onto the outer planet. The inner planet's orbit gradually shrinks because energy is dissipated through tides, pulling in close to the star and producing a hot Jupiter. In the process, the orbit of the planet can flip.

Only about a quarter of astronomers' observations of these hot Jupiter systems show flipped orbits. The Northwestern model needs to be able to produce both flipped and non-flipped orbits, and it does, Rasio said.

The title of the paper is "Hot Jupiters From Secular Planet-Planet Interactions." In addition to Rasio and Naoz, other authors of the paper are Will M. Farr, a postdoctoral fellow at the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA); Yoram Lithwick, an assistant professor of physics and astronomy; and Jean Teyssandier, a visiting pre-doctoral fellow, all from Northwestern.

The National Science Foundation, Northwestern's CIERA and the Peter and Patricia Gruber Foundation Fellowship supported the research.

Lisa-Joy Zgorski | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>