Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planetary family portrait reveals another exoplanet

09.12.2010
NRC Herzberg Institute of Astrophysics releases image of fourth planet orbiting bright star HR 8799

An international team of astronomers has discovered a fourth giant planet, HR 8799e, outside our solar system. The new planet joins the three planets that were the subjects of the first-ever images of a planetary family orbiting a star other than our Sun. The planets orbit the star HR 8799, which lies about 129 light years from Earth and is faintly visible to the naked eye.

The international team included astronomer Dr. Christian Marois of the National Research Council Canada (NRC) in Victoria, B.C., as well as astronomers from the University of California Los Angeles (UCLA), Lawrence Livermore National Laboratory (LLNL), and the Lowell Observatory. Their discovery was published today in Nature (http://dx.doi.org/10.1038/nature09684), and images of the fourth planet were captured at Hawaii's W. M. Keck Observatory.

All four planets orbiting HR 8799 are similar in size: likely between five and seven times the mass of Jupiter, the largest planet in the Sun's own family. The newly revealed planet orbits HR 8799 more closely than the other three. If this newly discovered planet were in orbit around the Sun, it would lie between the orbits of Saturn and Uranus.

"We reached a milestone in the search for other worlds in 2008 with the discovery of the HR 8799 planetary system," said Dr. Christian Marois, an astronomer with NRC. Dr. Marois is the first author of the new paper and designed the improved image-processing software that made the new discovery possible. "The images of this new inner planet are the culmination of ten years' worth of innovation, making steady progress to optimize every aspect of observation and analysis. Compared with what was previously possible, this allows us to detect planets located ever closer to their stars and ever further from our own solar system."

Discovery of this fourth giant planet strengthens the remarkable resemblance between the HR 8799 planetary system and our own — the HR 8799 system appears as a supersized version of our solar system. "Besides having four giant planets, both systems also contain two 'debris belts,' composed of small rocky or icy objects along with lots of tiny dust particles," said co-author Ben Zuckerman, a professor of physics and astronomy at UCLA. The mass of the HR 8799 planetary system is much more extreme than that of our own — the combined mass of the four giant planets may be twenty times higher, and the debris belt counterparts are also much larger than our own.

"The four massive planets pull on each other gravitationally," said co-author Quinn Konopacky, a post-doctoral researcher at LLNL. "We don't yet know if the system will last for billions of years, or fall apart in a few million more. As astronomers carefully follow the HR 8799 planets during the coming decades, the question of the stability of their orbits could become much clearer."

The origin of these four giant planets remains a puzzle — neither of the two main models of planet formation can account for all four objects. Dr. Bruce Macintosh of LLNL, a co-author, noted that there's no simple model that can form all four planets at their current location. It's going to be a challenge for our theoretical colleagues.

Travis Barman, a Lowell Observatory exoplanet theorist and study co-author stated images like these bring the exoplanet field, which studies planets outside our solar system, into an era of exoplanet characterization. Astronomers can now directly examine the atmospheric properties of four giant exoplanets that are all the same young age and that formed from the same building materials.

Detailed study of the properties of HR 8799e will be challenging due to its relative faintness and proximity to its star. To overcome these limitations, a team led by Dr. Macintosh, including NRC and several US institutions, is building an advanced new instrument, called the Gemini Planet Imager for the Gemini Observatory. This new instrument will physically block the starlight and allow quick detection and detailed characterization of planets similar to HR 8799e. The Gemini Planet Imager is scheduled to arrive at the Gemini South telescope in Chile late in 2011. "We can expect a tidal wave of new discoveries with the new planet imager. HR 8799 is really just the beginning, the tip of the iceberg," said Dr. Marois.

For more information or to arrange an interview with Dr. Marois, please visit NRC's Web site at http://www.nrc-cnrc.gc.ca or contact:
Media Relations
National Research Council Canada
613-991-1431
media@nrc-cnrc.gc.ca
About the National Research Council of Canada
Recognized globally for research and innovation, the National Research Council of Canada is a leader in the development of an innovative, knowledge-based economy for Canada through science and technology.

NRC Media Relations | EurekAlert!
Further information:
http://www.nrc-cnrc.gc.ca

Further reports about: Council LLNL Macintosh NRC Observatory Planet Planetary giant planet new planet planetary system planets orbit

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>