Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planetary Exploration Suit Will be Tested in Antarctica

18.03.2011
University of North Dakota aerospace engineer and researcher Pablo de Leon is part of a unique mission to test a UND planetary exploration suit -- the NDX-1 -- at a remote military base in Antarctica. The team departed for the Antarctic base from an Argentine Air Force site earlier this week.

The Spaceward Bound Mission includes de Leon of the UND Department of Space Studies; NASA space biologist Jon Rask; and NASA astrobiologist Dr. Chris McKay. Rask is Senior Scientist and McKay is a planetary scientist at the National Aeronautics and Space Administration’s (NASA’s) Ames Research near San Francisco, CA. The team also includes a field support and documentation specialist.

The team is expected to spend seven to 10 days at the Marambio Station, Argentina’s main Antarctic base, to conduct a variety of tests with the NDX-1 planetary exploration suit system. The NDX-1 also has been tested extensively in the Badlands and at the Dahlen Esker in North Dakota, at the Mars Desert Research Center in Utah, and at the Ames Research Center.

The NDX-1 was designed and constructed at UND through NASA funding provided by the North Dakota Space Grant Consortium.

The team plans to blog this expedition; you can follow the team’s test routines at http://spacesuitlab.blogspot.com/

Background
Since 2008, NASA Ames Research Center and the University of North Dakota have worked together to incorporate the pressurized NDX-1 space suit into subsurface drilling and sample gathering tests at astrobiologically interesting field sites in North Dakota, USA. The team has successfully demonstrated that a subject who has donned the pressurized NDX-1 suit can accomplish drilling operations and soil/rock sample gathering procedures.
Goals
Antarctica is arguably the most Mars-like location on Earth, and is therefore an excellent location to test scientific hypotheses and technologies that support Mars exploration. The four main goals of this mission are to test the use of pressurized space suit technology in Antarctica; test rock-drilling technologies; test radiation/dosimetry technologies; gather soil samples from the permafrost for microbial analysis; and document the entire expedition.

The expedition to Antarctica is modeled on the experience learned in North Dakota to accomplish several objectives, including a demonstration in the use of a pressurized space suit and drilling operations at desired locations with rock drilling technologies.

Samples of soil and ice will be gathered at the top of the permafrost boundary, at the ice-soil interface, as well as within the permafrost. The data gathered from this analysis will be compared to data from UND space suit experiments conducted earlier, including a test and demonstration conducted earlier in western North Dakota that garnered international attention.

Useful links:
*UND Space Suit Laboratory http://www.human.space.edu/current.html
*UND Space Suit blog http://spacesuitlab.blogspot.com/
*NASA Web page about UND space suit program
http://nasawatch.com/archives/2006/05/und-tests-experimental-planetary-space-suit.html

*UND Department of Space Studies http://www.space.edu/

Juan Miguel Pedraza | Newswise Science News
Further information:
http://www.space.edu
http://www.und.edu

Further reports about: Antarctic Predators Antarctica Dakota Exploration NASA Planetary Suit

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>