Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planet hunters no longer blinded by the light

18.10.2010
UA astronomers have developed a way to see faint planets previously hidden in their star's glare. The new mode enables scientists to search for planets closer to the star than has been previously possible

Using new optics technology developed at the University of Arizona's Steward Observatory, an international team of astronomers has obtained images of a planet on a much closer orbit around its parent star than any other extrasolar planet previously found.

The discovery, published online in Astrophysical Journal Letters, is a result of an international collaboration among the Steward Observatory, the Swiss Federal Institute of Technology Zurich, the European Southern Observatory, Leiden University in the Netherlands and Germany's Max-Planck-Institute for Astronomy.

Installed on the European Southern Observatory's Very Large Telescope, or VLT, atop Paranal Mountain in Chile, the new technology enabled an international team of astronomers to confirm the existence and orbital movement of Beta Pictoris b, a planet about seven to 10 times the mass of Jupiter, around its parent star, Beta Pictoris, 63 light years away.

At the core of the system is a small piece of glass with a highly complex pattern inscribed into its surface. Called an Apodizing Phase Plate, or APP, the device blocks out the starlight in a very defined way, allowing planets to show up in the image whose signals were previously drowned out by the star's glare.

"This technique opens new doors in planet discovery," said Phil Hinz, director of the UA's Center for Astronomical Adaptive Optics at Steward Observatory. "Until now, we only were able to look at the outer planets in a solar system, in the range of Neptune's orbit and beyond. Now we can see planets on orbits much closer to their parent star."

In other words, if alien astronomers in another solar system were studying our solar system using the technology previously available for direct imaging detection, all they would see would be Uranus and Neptune. The inner planets, Mercury, Venus, Earth, Mars and Saturn, simply wouldn't show up in their telescope images.

To put the power of the new optics system in perspective: Neptune's mean distance from the sun is about 2.8 billion million miles, or 30 Astronomical Units, or AUs. One AU is defined as the mean distance between the sun and the Earth.

The newly imaged planet, Beta Pictoris b, orbits its star at about seven AUs, a distance where things get especially interesting, according to Hinz, "because that's where we believe the bulk of the planetary mass to be in most solar systems. Between five and 10 AUs."

While planet hunters have used a variety of indirect methods to detect the "footprints" of extrasolar planets – planets outside our solar system – for example the slight gravitational wobble an orbiting planet induces in its parent star, very few of them have been directly observed.

According to Hinz, the growing zoo of extrasolar planets discovered to date – mostly super-massive gas giants on wide orbits – represents a biased sample because their size and distance to their parent star makes them easier to detect.

"You could say we started out by looking at oddball solar systems out there. The technique we developed allows us to search for lower-mass gas giants about the size of Jupiter, which are more representative of what is out there."

He added: "For the first time, we can search around bright, nearby stars such as Alpha Centauri, to see if they have gas giants."

The breakthrough, which may allow observers to even block out starlight completely with further refinements, was made possible through highly complex mathematical modeling.

"Basically, we are canceling out the starlight halo that otherwise would drown out the light signal of the planet," said Johanan (John) Codona, a senior research scientist at the UA's Steward Observatory who developed the theory behind the technique, which he calls phase-apodization coronagraphy.

"If you're trying to find something that is thousands or a million times fainter than the star, dealing with the halo is a big challenge."

To detect the faint light signals from extrasolar planets, astronomers rely on coronagraphs to block out the bright disk of a star, much like the moon shielding the sun during an eclipse, allowing fainter, nearby objects to show up.

Using his own unconventional mathematical approach, Codona found a complex pattern of wavefront ripples, which, if present in the starlight entering the telescope, would cause the halo part to cancel out but leave the star image itself intact. The Steward Observatory team used a machined piece of infrared optical glass about the size and shape of a cough drop to introduce the ripples. Placed in the optical path of the telescope, the APP device steals a small portion of the starlight and diffracts it into the star's halo, canceling it out.

"It's a similar effect to what you would see if you were diving in the ocean and looked at the sun from below the surface," explained Sascha Quanz from the Swiss Federal Institute of Technology's Institute for Astonomy, the lead author of the study. "The waves on the surface bend the light rays and cause the sky and clouds to appear quite different. Our optic works in a similar way."

In order to block out glare from a star, conventional coronagraphs have to be precisely lined up and are highly susceptible to disturbance. A soft night breeze vibrating the telescope might be all it takes to ruin the image. The APP, on the other hand, requires no aiming and works equally well on any stars or locations in the image.

"Our system doesn't care about those kinds of disturbances," Codona said. "It makes observing dramatically easier and much more efficient."

In the development of APP, Codona was joined by Matt Kenworthy (now at Leiden Observatory in the Netherlands). Hinz, who is a member of the instrument upgrade team for the VLT, played a key role in the technique's implementation on the 6.5 Meter Telescope on Mount Hopkins in Southeastern Arizona.

Former UA astronomy professor Michael Meyer, now at the Swiss Federal Institute of Technology Zurich, where he led the group implementing the technology on the VLT, pointed out that APP is likely to advance areas of research in addition to the hunt for extrasolar planets.

"It will be exciting to see how astronomers will use the new technology on the VLT, since it lends itself to other faint structures around young stars and quasars, too."

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>