Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recommend this page:
To (Recipient's email address)
Your name (Optional)
From (Your email address)
Message (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

Pitt team first to detect exciton in metal

02.06.2014

Team gives a microscopic quantum mechanical description of how light excites electrons in metals

University of Pittsburgh researchers have become the first to detect a fundamental particle of light-matter interaction in metals, the exciton. The team will publish its work online June 1 in Nature Physics.

Mankind has used reflection of light from a metal mirror on a daily basis for millennia, but the quantum mechanical magic behind this familiar phenomenon is only now being uncovered.

Physicists describe physical phenomena in terms of interactions between fields and particles, says lead author Hrvoje Petek, Pitt's Richard King Mellon Professor in the Department of Physics and Astronomy within Kenneth P. Dietrich School of Arts and Sciences. When light (an electromagnetic field) reflects from a metal mirror, it shakes the metal's free electrons (the particles), and the consequent acceleration of electrons creates a nearly perfect replica of the incident light (the reflection).

The classical theory of electromagnetism provides a good understanding of inputs and outputs of this process, but a microscopic quantum mechanical description of how the light excites the electrons is lacking.

Petek's team of experimental and theoretical physicists and chemists from the University of Pittsburgh and Institute of Physics in Zagreb, Croatia, report on how light and matter interact at the surface of a silver crystal. They observe, for the first time, an exciton in a metal.

Excitons, particles of light-matter interaction where light photons become transiently entangled with electrons in molecules and semiconductors, are known to be fundamentally important in processes such as plant photosynthesis and optical communications that are the basis for the Internet and cable TV. The optical and electronic properties of metals cause excitons to last no longer than approximately 100 attoseconds (0.1 quadrillionth of a second). Such short lifetimes make it difficult for scientists to study excitons in metals, but it also enables reflected light to be a nearly perfect replica of the incoming light.

Yet, Branko Gumhalter at the Institute of Physics predicted, and Petek and his team experimentally discovered, that the surface electrons of silver crystals can maintain the excitonic state more than 100 times longer than the bulk metal, enabling the excitons in metals to be experimentally captured by a newly developed multidimensional coherent spectroscopic technique.

The ability to detect excitons in metals sheds light on how light is converted to electrical and chemical energy in plants and solar cells, and in the future it may enable metals to function as active elements in optical communications. In other words, it may be possible to control how light is reflected from a metal.

###

The paper, "Transient Excitons at Metal Surfaces," will be published June 1 in the online edition of Nature Physics. The work was supported by a grant from the Division of Chemical Sciences, Geosciences, and Biosciences of the Office of Basic Energy Sciences of the U.S. Department of Energy.

Joseph Miksch | Eurek Alert!

Further reports about: Energy Geosciences Physics electrons exciton excitons mirror particles phenomenon photons technique

More articles from Physics and Astronomy:

nachricht Down to the quantum dot
07.07.2015 | Forschungszentrum Juelich

nachricht Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover
07.07.2015 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Surfing a wake of light

Researchers observe and control light wakes for the first time

When a duck paddles across a pond or a supersonic plane flies through the sky, it leaves a wake in its path. Wakes occur whenever something is traveling...

Im Focus: Light-induced Magnetic Waves in Materials Engineered at the Atomic Scale

Researchers explore ultrafast control of magnetism across interfaces: A new study discovers how the sudden excitation of lattice vibrations in a crystal can trigger a change of the magnetic properties of an atomically-thin layer that lies on its surface.

A research team, led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg, the University of Oxford, and the...

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Down to the quantum dot

07.07.2015 | Physics and Astronomy

Tundra study uncovers impact of climate warming in the Arctic

07.07.2015 | Earth Sciences

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover

07.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>