Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recommend this page:
To (Recipient's email address)
Your name (Optional)
From (Your email address)
Message (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

Pitt team first to detect exciton in metal

02.06.2014

Team gives a microscopic quantum mechanical description of how light excites electrons in metals

University of Pittsburgh researchers have become the first to detect a fundamental particle of light-matter interaction in metals, the exciton. The team will publish its work online June 1 in Nature Physics.

Mankind has used reflection of light from a metal mirror on a daily basis for millennia, but the quantum mechanical magic behind this familiar phenomenon is only now being uncovered.

Physicists describe physical phenomena in terms of interactions between fields and particles, says lead author Hrvoje Petek, Pitt's Richard King Mellon Professor in the Department of Physics and Astronomy within Kenneth P. Dietrich School of Arts and Sciences. When light (an electromagnetic field) reflects from a metal mirror, it shakes the metal's free electrons (the particles), and the consequent acceleration of electrons creates a nearly perfect replica of the incident light (the reflection).

The classical theory of electromagnetism provides a good understanding of inputs and outputs of this process, but a microscopic quantum mechanical description of how the light excites the electrons is lacking.

Petek's team of experimental and theoretical physicists and chemists from the University of Pittsburgh and Institute of Physics in Zagreb, Croatia, report on how light and matter interact at the surface of a silver crystal. They observe, for the first time, an exciton in a metal.

Excitons, particles of light-matter interaction where light photons become transiently entangled with electrons in molecules and semiconductors, are known to be fundamentally important in processes such as plant photosynthesis and optical communications that are the basis for the Internet and cable TV. The optical and electronic properties of metals cause excitons to last no longer than approximately 100 attoseconds (0.1 quadrillionth of a second). Such short lifetimes make it difficult for scientists to study excitons in metals, but it also enables reflected light to be a nearly perfect replica of the incoming light.

Yet, Branko Gumhalter at the Institute of Physics predicted, and Petek and his team experimentally discovered, that the surface electrons of silver crystals can maintain the excitonic state more than 100 times longer than the bulk metal, enabling the excitons in metals to be experimentally captured by a newly developed multidimensional coherent spectroscopic technique.

The ability to detect excitons in metals sheds light on how light is converted to electrical and chemical energy in plants and solar cells, and in the future it may enable metals to function as active elements in optical communications. In other words, it may be possible to control how light is reflected from a metal.

###

The paper, "Transient Excitons at Metal Surfaces," will be published June 1 in the online edition of Nature Physics. The work was supported by a grant from the Division of Chemical Sciences, Geosciences, and Biosciences of the Office of Basic Energy Sciences of the U.S. Department of Energy.

Joseph Miksch | Eurek Alert!

Further reports about: Energy Geosciences Physics electrons exciton excitons mirror particles phenomenon photons technique

More articles from Physics and Astronomy:

nachricht Telescopes team up to find distant Uranus-sized planet through microlensing
31.07.2015 | NASA/Goddard Space Flight Center

nachricht California 'rain debt' equal to average full year of precipitation
31.07.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>