Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinpointing the most fertile galaxies in the universe

17.04.2013
Using the compound telescope ALMA, a team of researchers has pinpointed the positions of more than 100 of the most fertile star-forming galaxies.

The precise position measurements clear up a mystery about the observed productivity of these objects. They also show that previous studies of these objects have often suffered from mis-identifications, and how precise measurements like these new results avoid this kind of error.


A team of astronomers including MPIA researchers has used ALMA (the Atacama Large Millimeter/submillimeter Array) to pinpoint the locations of over 100 of the most fertile star-forming galaxies in the early Universe. This image shows close-ups of a selection of these galaxies. The ALMA observations, at submillimetre wavelengths, are shown in orange/red and are overlaid on an infrared view of the region as seen by the IRAC camera on the Spitzer Space Telescope. Previous observations had not been sharp enough to unambiguously identify these galaxies in images at other wavelengths.
Credit: ALMA (ESO/NAOJ/NRAO), APEX (MPIfR/ESO/OSO), J. Hodge (MPIA) et al., A. Weiss et al., NASA Spitzer Science Center

Submillimeter galaxies, discovered in the late 1990s, produce so many new stars as to be responsible for a significant fraction of the total energy output of all galaxies over the course of all of cosmic history. A side effect of having many (and many massive) stars is the production of lots of dust. And indeed, in the most extreme cases, these fertile galaxies are so deeply shrouded in dust they are effectively hidden from sight for astronomers observing in visible light. That is why, in order for a full census of these objects, and to reliably gauge their star formation activity, astronomers need to resort to submillimeter observations. Additional information can come from observations using infrared radiation or radio waves.

Previous submillimeter surveys of these distant objects suffered from a lack of detail. But now, a team led by Ian Smail (Durham University, UK) has completed a large, yet highly detailed survey of more than 100 such objects using the international compound telescope ALMA (Atacama Large Millimeter/Submillimeter Array), located in Chile, at a resolution more than a factor 10 better than previous surveys. The observations, targeting a region known as the Extended Chandra Deep Field South in the Southern constellation Fornax, made use of 15 of ALMA's antennas, which were combined to act as a single, large telescope.

The new survey's high-resolution images for a large number of galaxies have helped to solve one apparent mystery concerning submillimeter galaxies. Alexander Karim (Argelander Institute for Astronomy, Bonn and Durham University, UK) explains: "We previously thought the brightest of these galaxies were forming stars more than a thousand times more vigorously than our own galaxy, the Milky Way, putting them at risk of blowing themselves apart. But instead of single, hyperactive galaxies, the ALMA images revealed multiple, smaller galaxies, each forming stars at a more reasonable rate." Karim, formerly a PhD student at the Max Planck Institute for Astronomy, is a member of the survey team and lead author of the paper reporting this key result of the survey.

The newly published survey also promises to put future studies of submillimeter galaxies onto a solid footing. Jacqueline Hodge of the Max Planck Institute for Astronomy, lead author of the survey paper, explains: "Astronomers use many different kinds of light to examine celestial objects. But this only works if you know precise positions – only then can you say 'Yes, this blob here in my infrared image represents the same object as that blob there in my submillimeter image'. Our survey shows that previous attempts to identify the infrared and radio counterparts of submillimeter galaxies were considerably error-prone, leading to incorrect identifications in about a third of all cases. With our precise submillimeter position measurements, such errors can be avoided."

The work by Smail, Hodge, Karim and their colleagues has prepared the stage for the next logical step: Examinations at even higher resolution, deploying the full power of the completed ALMA array with all of its 66 antennas, could help elucidate the nature of submillimeter galaxies. The most plausible scenario is that submillimeter galaxies are created when large galaxies collide, their mutual gravitational pull triggering an intense phase of star formation. High-resolution images could show aspects of those galaxies' shapes, and possibly traces of the collision process itself.

Contact information

Jacqueline Hodge (lead author, survey paper)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 467
Email: hodge@mpia.de

Fabian Walter (co-author)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 225
Email: walter@mpia.de

Markus Pössel (public information officer)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>