Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinning Down a Proton

15.04.2010
Researchers Develop Method to Describe Binding of Protons and Neutrons

A researcher at North Carolina State University has helped to develop a new method for describing the binding of protons and neutrons within nuclei. This method may improve scientists’ ability to predict and understand astrophysical reactions within stars.

When protons and neutrons bind, the process releases energy. This fusion energy is how stars burn. If scientists can determine where these particles are, what they are doing, and how they are binding, they will then be able to more accurately predict and understand the life cycles of stars.

NC State physicist Dr. Dean Lee and German colleagues Evgeny Epelbaum, Hermann Krebs, and Ulf-G. Meissner, set out to see if there was a more straightfoward approach to describing particle interactions than currently used.

Their results were published in the April 9 issue of Physical Review Letters.

“These particles can literally be anywhere,” Lee says, “so pinning them down is hard. However, we do know that there are hierarchies of attractions between particles and we were able to use these hierarchies to give us a framework for describing how the protons and neutrons could bind with one another. That hierarchy is known as effective field theory.”

Lee and his colleagues used a numerical lattice which took into account all of the possible positions of the particles within the nucleus and the corresponding interaction energies. They ran a supercomputer simulation for the elements helium-4, lithium-6 and carbon-12, and demonstrated that the results of those simulations were accurate.

“Currently the indications are that our effective field theory calculations should let us describe nuclei with 16 or fewer protons and neutrons,” Lee says. “But our ability to describe larger nuclei using this approach also looks promising.”

The Department of Physics is part of NC State’s College of Physical and Mathematical Sciences.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Pinning ProTon Supercomputer simulation carbon-12 helium-4 lithium-6 neutrons nuclei

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>