Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pictures show fourth planet in giant version of our solar system

09.12.2010
Astronomers have discovered a fourth giant planet, joining three others that, in 2008, were the subject of the first-ever pictures of a planetary system orbiting another star other than our sun.

The solar system, discovered by a team from Lawrence Livermore National Laboratory and the National Research Council of Canada (NRC) Herzberg Institute of Astrophysics with collaborators at University of California, Los Angeles and Lowell Observatory, orbits around a dusty young star named HR8799, which is 129 light years away. All four planets are roughly five to seven times the mass of Jupiter.

Now, the same research team has discovered a fourth planet that is about seven times the mass of Jupiter. Using high-contrast, near infrared adaptive optics on the Keck II telescope in Hawaii, the astronomers imaged the fourth planet (dubbed HR8799e) in 2009 and confirmed its existence and orbit in 2010. The research appears in the Dec. 8 edition of the journal Nature.

"The images of this new inner planet in the system is the culmination of 10 years worth of innovation, making steady progress to optimize every observation and analysis step to allow the detection of planets located ever closer to their stars," said Christian Marois, a former LLNL postdoc now at NRC, and first author of the new paper.

If this newly discovered planet was located in orbit around our sun, it would lie between Saturn and Uranus. At about 30 million years old, this giant version of our solar system is young compared to our system, which is about 4.6 billion years old.

Though the system is very much like our own, it is much more extreme than our own -- the combined mass of the four giant planets may be 20 times higher, and the asteroid and comet belts are dense and turbulent. In fact, the massive planets' pull on each other gravitationally, and the system may be on the verge of falling apart.

Lawrence Livermore scientists simulated millions of years of evolution of the system, and showed that to have survived this long, the three inner planets may have to orbit like clockwork, with the new planet going around the star exactly four times while the second planet finishes two orbits in the time it takes the outer planet to complete one. This behavior was first seen in the moons of Jupiter but has never before been seen on this scale.

Studying the planet's orbits also will help estimate their masses. "Our simulations show that if the objects were not planets, but supermassive "brown dwarfs," the system would have fallen apart already," said Quinn Konopacky, a postdoctoral researcher at LLNL's Institute of Geophysics and Planetary Physics and a key author of the paper. (Brown dwarfs are failed stars, too low in mass to sustain stable hydrogen fusion but larger than planets.)

"The implication is that we have truly found a unique new system of planets. We don't yet know if the system will last for billions of years, or fall apart in a few million more. As astronomers carefully follow the HR8799 planets during the coming decades, the question of just how stable their orbits are could become much clearer." (See the simulation showing thousands of years of evolution of the system if the planets are not in a clockwork orbit or are more massive brown dwarfs.)

The origin of these four giant planets remains a puzzle. It neither follows the "core accretion" model, in which planets form gradually close to stars where the dust and gas are thick or the "disk fragmentation" model in which a turbulent planet-forming disk rapidly cools and collapses out at its edges. Bruce Macintosh, a senior scientist at LLNL and the principal investigator for the Keck Observatory program, said: "There's no simple model that can make all four planets at their current location. It's a challenge for our theoretical colleagues."

Previous observations had shown evidence for a dusty asteroid belt orbiting closer to the star -- the new planet's gravity helps account for the location of those asteroids, confining their orbits just like Jupiter does in our solar system. "Besides having four giant planets, both systems also contain two so-called "debris belts" composed of small rocky and/or icy objects along with lots of tiny dust particles, similar to the asteroid and Kuiper comet belts of our solar system," noted co-author Ben Zuckerman, a professor of physics and astronomy at UCLA. (See the movie.)

"Images like these bring the exoplanet field into the era of characterization," said Travis Barman, a Lowell Observatory exoplanet theorist and co-author of the current paper. "Astronomers can directly examine the atmospheric properties of four giant planets orbiting another star that are all the same young age and that formed from the same building materials."

"I think there's a very high probability that there are more planets in the system that we can't detect yet," Macintosh said. "One of the things that distinguishes this system from most of the extrasolar planets that are already known is that HR8799 has its giant planets in the outer parts -- like our solar system does -- and so has 'room' for smaller terrestrial planets -- far beyond our current ability to see -- in the inner parts."

A team led by Macintosh is constructing the Gemini Planet Imager, a new system that will be up to 100 times more sensitive than current instruments and able to image planets similar to our own Jupiter around nearby stars.

"It's amazing how far we've come in a few years," Macintosh said. "In 2007, when we first saw the system, we could barely see two planets out past the equivalent of Pluto's orbit. Now we're imaging a fourth planet almost where Saturn is on our solar system. It's another step to the ultimate goal -- still more than a decade away -- of a picture showing another planet like Earth."

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/news/newsreleases/2010/Dec/NR-10-12-02.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>