Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First pictures of the moon

03.07.2009
Münster planetologists celebrate "LRO" mission

Yesterday (2 July 2009) the Lunar Reconnaissance Orbiter (LRO) - the American mission which left Cape Canaveral on 18 June 2009 with the aim of preparing a manned return to the moon - transmitted the first pictures back to Earth.


First pictures from mare nubium
NASA

For Prof. Harald Hiesinger from the Institute of Planetology at Münster University this is a tremendous success. "I've never seen the moon like this before," he says, "it's absolutely fantastic!" Hiesinger's is one of six experiments on board the LRO.

The new pictures were taken close to the so-called 'terminator', i.e. the dividing line between the dark and the light sides of the moon. The extremely low-lying sun emphasises the morphology of the surface through the long shadows cast. After six years of preparation Hiesinger is now delighted at these first pictures.

"The new high-resolution pictures show in unprecedented detail the moon's surface in the highlands south of the Mare Nubium, one of the dark volcanic surfaces on the south-west front side of the moon," he says. On board there are several cameras, including one with a wide-angle lens and two equipped with tele-zooms. The high-resolution NAC camera maps the surface with around 50 centimetres per pixel, the WAC with around 100 metres per pixel.

"The hard work of the past few years is finally paying off," says Hiesinger. "We can now see the smallest craters and the finest geological structures in these pictures, which we shall be evaluating in detail in the next few years. There'll be a lot to do - for students, too." Hiesinger wants to let students work directly on the data. "For many of my students and staff this presents a unique opportunity to work directly on a mission that's underway. It means they're all highly motivated," says Hiesinger, who was the only German to be selected by NASA right at the beginning of the mission.

Among other things, the team in Münster will be using the pictures to map the moon's surface precisely and determine its age. In doing so, the Münster scientists will be using a method which was already developed in the Apollo era and has been continually refined ever since. As a surface collects more and more craters, the longer it is exposed to bombardment by meteorites, the age of the surface can be determined by counting the craters. The first pictures released by NASA today do indeed show a large number of craters of varying sizes, which Hiesinger and his team will now immediately start counting.

"But we shall of course be looking very closely at the polar areas too." he says, "These are especially interesting because it is suspected that there might be water in the deep craters in the polar regions." As no ray of sunlight is likely to penetrate into these craters it is very cold there, so that water is able to freeze and remain stable for a long time there. "Water on the moon is of course an enormously valuable resource for all future astronauts. This water can be drunk or used as rocket fuel," Hiesinger explains.

Another exciting question is the selection of safe landing spots for future manned missions. The Münster planetologists will be directly involved in looking for the best landing places. "Today's pictures are just the first appetizers," says Hiesinger. "Over the coming year we will be getting many terabytes of first-class, spectacular pictures." And as the Lunar Reconnaissance Orbiter used less fuel on its way to the moon than was planned, the mission will be able to orbit the moon for an estimated five years.

Brigitte Nussbaum | idw
Further information:
http://www.nasa.gov/mission_pages/LRO/main/index.html
http://www.uni-muenster.de/Planetology/en/homepage/homepage.html

Further reports about: LRO Lunar Reconnaissance Orbiter NASA Orbiter Reconnaissance lunar base polar region

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>