Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First pictures of the moon

03.07.2009
Münster planetologists celebrate "LRO" mission

Yesterday (2 July 2009) the Lunar Reconnaissance Orbiter (LRO) - the American mission which left Cape Canaveral on 18 June 2009 with the aim of preparing a manned return to the moon - transmitted the first pictures back to Earth.


First pictures from mare nubium
NASA

For Prof. Harald Hiesinger from the Institute of Planetology at Münster University this is a tremendous success. "I've never seen the moon like this before," he says, "it's absolutely fantastic!" Hiesinger's is one of six experiments on board the LRO.

The new pictures were taken close to the so-called 'terminator', i.e. the dividing line between the dark and the light sides of the moon. The extremely low-lying sun emphasises the morphology of the surface through the long shadows cast. After six years of preparation Hiesinger is now delighted at these first pictures.

"The new high-resolution pictures show in unprecedented detail the moon's surface in the highlands south of the Mare Nubium, one of the dark volcanic surfaces on the south-west front side of the moon," he says. On board there are several cameras, including one with a wide-angle lens and two equipped with tele-zooms. The high-resolution NAC camera maps the surface with around 50 centimetres per pixel, the WAC with around 100 metres per pixel.

"The hard work of the past few years is finally paying off," says Hiesinger. "We can now see the smallest craters and the finest geological structures in these pictures, which we shall be evaluating in detail in the next few years. There'll be a lot to do - for students, too." Hiesinger wants to let students work directly on the data. "For many of my students and staff this presents a unique opportunity to work directly on a mission that's underway. It means they're all highly motivated," says Hiesinger, who was the only German to be selected by NASA right at the beginning of the mission.

Among other things, the team in Münster will be using the pictures to map the moon's surface precisely and determine its age. In doing so, the Münster scientists will be using a method which was already developed in the Apollo era and has been continually refined ever since. As a surface collects more and more craters, the longer it is exposed to bombardment by meteorites, the age of the surface can be determined by counting the craters. The first pictures released by NASA today do indeed show a large number of craters of varying sizes, which Hiesinger and his team will now immediately start counting.

"But we shall of course be looking very closely at the polar areas too." he says, "These are especially interesting because it is suspected that there might be water in the deep craters in the polar regions." As no ray of sunlight is likely to penetrate into these craters it is very cold there, so that water is able to freeze and remain stable for a long time there. "Water on the moon is of course an enormously valuable resource for all future astronauts. This water can be drunk or used as rocket fuel," Hiesinger explains.

Another exciting question is the selection of safe landing spots for future manned missions. The Münster planetologists will be directly involved in looking for the best landing places. "Today's pictures are just the first appetizers," says Hiesinger. "Over the coming year we will be getting many terabytes of first-class, spectacular pictures." And as the Lunar Reconnaissance Orbiter used less fuel on its way to the moon than was planned, the mission will be able to orbit the moon for an estimated five years.

Brigitte Nussbaum | idw
Further information:
http://www.nasa.gov/mission_pages/LRO/main/index.html
http://www.uni-muenster.de/Planetology/en/homepage/homepage.html

Further reports about: LRO Lunar Reconnaissance Orbiter NASA Orbiter Reconnaissance lunar base polar region

More articles from Physics and Astronomy:

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

nachricht Filling the early universe with knots can explain why the world is three-dimensional
17.10.2017 | Vanderbilt University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>