Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first pictures of not 1, not 2, but 3 planets orbiting a star

14.11.2008
A team of astronomers used the Keck and Gemini North telescopes on Mauna Kea in Hawaii to discover three planets in orbit around the young star HR 8799. Christian Marois (the lead author of a paper to be published in Science) and his collaborators developed an advanced computer processing technique that helped separate the planets from the much brighter light of the star. HR 8799 is located about 130 light-years from Earth and is just visible to the naked eye in the constellation of Pegasus.

These new planets are young enough that they are still glowing from heat leftover from their formation which took place approximately 60 million years ago (fresh out of the oven by astronomical standards). Since these planets take hundreds of years to orbit their host star, directly measuring their masses is not immediately possible ... we have to wait.

In the meantime, theoretical models of planetary interiors and atmospheres can be used to infer many of their properties. This type of analysis is greatly aided by the ability to take pictures of the planets orbiting HR 8799, allowing us to peer straight down into their atmospheres and measure what the conditions are like. Comparing the predictions from theory to the observed brightness across a broad range of wavelengths tells us that these planets are respectively about seven, ten, and ten times the mass of Jupiter and about 20 percent to 30 percent larger than Jupiter in diameter. The planets could be slightly more or less massive depending on their exact age.

"Knowledge of the age of HR 8799 is critical for linking the observed luminosities of the planets with their masses," commented co-author Travis Barman, an astronomer at Lowell Observatory. "The older (or younger) the planets are the more (or less) massive the planets will be. Detailed comparison with theoretical model atmospheres confirms that all three planets possess complex atmospheres with dusty clouds partially trapping and re-radiating the escaping heat."

For theorists like Barman, HR 8799 is a gold mine, allowing broad tests of predictions for planet formation, evolution, and atmospheric physics. The most exciting discoveries about these new planets are certainly still to come. Now that each planet can be individually imaged, plans are underway to take the first spectra of young planets which will allow us to study in detail their chemical compositions, cloud structures, and thermal properties.

This work appears today in Science Express and in an upcoming issue of Science.

Partial support for this work was provided by NASA to Lowell Observatory through grant NNX07AG68G S03 from the Origins of Solar Systems program and by a generous allocation of computing time at the NASA Advanced Supercomputing facilities. Support for this work was also provided by the Mount Cuba Astronomical Foundation.

contact:

Steele Wotkyns
steele@lowell.edu
(928) 233-3232
Travis Barman
barman@lowell.edu
Team Members
Christian Marois – NRC Herzberg Institute of Astrophysics, Victoria, BC
Bruce Macintosh – Lawrence Livermore National Laboratory, Livermore, CA, USA
Travis Barman – Lowell Observatory, Flagstaff, AZ, USA
Ben Zuckerman – Astronomy Department, University of California, Los Angeles, CA, USA
Jennifer Patience – School of Physics, University of Exeter, Exeter, UK
Inseok Song – University of Georgia, Athens, GA, USA
David Lafrenière – Dep't of Astronomy and Astrophysics, University of Toronto, Toronto, ON

René Doyon – Département de Physique and Observatoire du Mont Mégantic, Université de Montréal, Montréal, QC

About Lowell Observatory

Lowell Observatory is a private, non-profit research institution founded in 1894 by Percival Lowell. The Observatory has been the site of many important findings including the discovery of the large recessional velocities (redshift) of galaxies by Vesto Slipher in 1912-1914 (a result that led ultimately to the realization the universe is expanding), and the discovery of Pluto by Clyde Tombaugh in 1930. Today, Lowell's 20 astronomers use ground-based telescopes around the world, telescopes in space, and NASA planetary spacecraft to conduct research in diverse areas of astronomy and planetary science. The Observatory welcomes more than 75,000 visitors each year to its Mars Hill campus in Flagstaff, Arizona for a variety of tours, telescope viewing, and special programs. Lowell Observatory currently has four research telescopes at its Anderson Mesa dark sky site east of Flagstaff, and is building a 4-meter class research telescope, the Discovery Channel Telescope, in partnership with Discovery Communications.

Steele Wotkyns | EurekAlert!
Further information:
http://www.lowell.edu

More articles from Physics and Astronomy:

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>