Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics research removes outcome unpredictability of ultracold atomic reactions

26.08.2014

Findings from a physics study by a Kansas State University researcher are helping scientists accurately predict the once unpredictable.

Yujun Wang, research associate with the James R. Macdonald Laboratory at Kansas State University, and Paul Julienne at the University of Maryland, looked at theoretically predicting and understanding chemical reactions that involve three atoms at ultracold temperatures. Their findings help explain the likely outcome of a chemical reaction and shed new light on mysterious quantum states.


Probability density -- given by the radius of the surface points to the origin -- of an Efimov trimer state at different three-body geometries that are characterized by the polar angle -- indicated by the trimer legends. The azimuthal angle characterizes the permutation of three atoms. The key feature in the probability density is that unlike ordinary molecular binding that mostly has a single geometry, the Efimov trimer covers have a broad range of geometries. The atoms in such states behave more like in a fluid drop.

Credit: Yujun Wang, Kansas State University.

The scientific journal Nature Physics recently published their findings in the article "Universal van der Waals Physics for Three Cold Atoms near Feshbach Resonances."

In the theoretical study, Wang and Julienne developed a robust yet simple model that successfully predicts what happens in atomic reactions at ultracold temperatures. Their model, which is considered the best available, accounts for spin physics of the atoms as well as the van der Waals force — the attractive long-range forces between the forming molecules.

"For a long time there has been the belief that this kind of reaction in three or more particles is too difficult to predict because the interaction is so complicated," Wang said. "Now, this research has shown consistent observations that indicate and imply that theoretical prediction is possible."

These findings can guide research in chemical engineering, molecular physics and other fields because the model gives scientists a largely accurate idea of how the atoms will bind to form a molecule, Wang said.

Additionally, their work may help scientists understand the Efimov effect.

The Efimov effect, which was first predicted in the early 1970s, is what happens when two atoms that normally repel each other become loosely bound when a third atom is introduced. The result is three atoms that all stick together despite trying to repel each other — a reaction that defies conventional knowledge.

"It's a very bizarre mechanical phenomenon in quantum mechanics that cannot be understood using the classical model of physics," Wang said. "The details of the Efimov effect are seemingly random and therefore complicated to study. But, because we showed that our atomic model and calculations can pretty accurately predict the position of such molecular states, we have new knowledge that may help us bypass those old barriers."

###

The study was funded through the Air Force Office of Scientific Research's Multidisciplinary University Research Initiative Program and the National Science Foundation.

Wang, an alumnus, received his doctorate from Kansas State University in 2010.

Yujun Wang | Eurek Alert!
Further information:
http://www.k-state.edu

Further reports about: Multidisciplinary Physics observations outcome reactions temperatures

More articles from Physics and Astronomy:

nachricht Knots in chaotic waves
29.07.2016 | University of Bristol

nachricht International team of scientists unveils fundamental properties of spin Seebeck effect
29.07.2016 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>