Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics research removes outcome unpredictability of ultracold atomic reactions

26.08.2014

Findings from a physics study by a Kansas State University researcher are helping scientists accurately predict the once unpredictable.

Yujun Wang, research associate with the James R. Macdonald Laboratory at Kansas State University, and Paul Julienne at the University of Maryland, looked at theoretically predicting and understanding chemical reactions that involve three atoms at ultracold temperatures. Their findings help explain the likely outcome of a chemical reaction and shed new light on mysterious quantum states.


Probability density -- given by the radius of the surface points to the origin -- of an Efimov trimer state at different three-body geometries that are characterized by the polar angle -- indicated by the trimer legends. The azimuthal angle characterizes the permutation of three atoms. The key feature in the probability density is that unlike ordinary molecular binding that mostly has a single geometry, the Efimov trimer covers have a broad range of geometries. The atoms in such states behave more like in a fluid drop.

Credit: Yujun Wang, Kansas State University.

The scientific journal Nature Physics recently published their findings in the article "Universal van der Waals Physics for Three Cold Atoms near Feshbach Resonances."

In the theoretical study, Wang and Julienne developed a robust yet simple model that successfully predicts what happens in atomic reactions at ultracold temperatures. Their model, which is considered the best available, accounts for spin physics of the atoms as well as the van der Waals force — the attractive long-range forces between the forming molecules.

"For a long time there has been the belief that this kind of reaction in three or more particles is too difficult to predict because the interaction is so complicated," Wang said. "Now, this research has shown consistent observations that indicate and imply that theoretical prediction is possible."

These findings can guide research in chemical engineering, molecular physics and other fields because the model gives scientists a largely accurate idea of how the atoms will bind to form a molecule, Wang said.

Additionally, their work may help scientists understand the Efimov effect.

The Efimov effect, which was first predicted in the early 1970s, is what happens when two atoms that normally repel each other become loosely bound when a third atom is introduced. The result is three atoms that all stick together despite trying to repel each other — a reaction that defies conventional knowledge.

"It's a very bizarre mechanical phenomenon in quantum mechanics that cannot be understood using the classical model of physics," Wang said. "The details of the Efimov effect are seemingly random and therefore complicated to study. But, because we showed that our atomic model and calculations can pretty accurately predict the position of such molecular states, we have new knowledge that may help us bypass those old barriers."

###

The study was funded through the Air Force Office of Scientific Research's Multidisciplinary University Research Initiative Program and the National Science Foundation.

Wang, an alumnus, received his doctorate from Kansas State University in 2010.

Yujun Wang | Eurek Alert!
Further information:
http://www.k-state.edu

Further reports about: Multidisciplinary Physics observations outcome reactions temperatures

More articles from Physics and Astronomy:

nachricht Winds a quarter the speed of light spotted leaving mysterious binary systems
29.04.2016 | University of Cambridge

nachricht Possible Extragalactic Source of High-Energy Neutrinos
28.04.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>