Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics and math shed new light on biology by mapping the landscape of evolution

09.08.2012
Although the qualitative description of evolution – its observed behavior and characteristics – is well-established, a comprehensive quantitative theory that captures general evolution dynamics is still lacking.

There are also many lingering mysteries surrounding the story of life on Earth, including the question of why sex is such a prevalent reproductive strategy. A team of scientists from the Chinese Academy of Sciences; Jilin University in Jilin, China; and the State University of New York at Stony Brook, led by Prof. Jin Wang, has examined some of these puzzles from a physical science prospective.

They propose a new theory of evolution with two ingredients: the underlying emergent "fitness" landscape and an associated evolutionary force called "curl flux," which causes species to move through the emergent fitness landscape in a spiraling manner.

The researchers captured evolutionary relationships in a system of equations. They then created quantitative pictures that visualized evolutionary pathways as journeys through a mountainous terrain of peaks and valleys of biological fitness. The key breakthrough beyond the conventional quantitative theory of evolution is the emergent curl flux, which is generated by interactions between individuals within or across species. The underlying emergent landscape gradient and the curl flux act together as a "Yin and Yang" duality pair to determine the dynamics of general evolution, says Wang. An example of similar behavior is the particle and wave duality that determines the dynamics of the quantum world, he notes. The researchers also note that this combined effect is analogous to the way electric and magnetic forces both act on electrons.

The new theory provides a physical foundation for general evolution dynamics. The researchers found that interactions between individuals of different species can give rise to the curl flux. This can sustain an endless evolution that does not lead to areas of higher relative fitness, even if the physical environment is unchanged.

This finding offers a theoretical framework to explain the Red Queen Hypothesis, which states that species continually evolve in order to fend off parasites that are themselves continually evolving. The hypothesis, first proposed by evolutionary biologist Leigh Van Valen in 1973, gets its name from the character of the Red Queen in Lewis Carroll's book Through the Looking-Glass, who observed that in her world it was necessary to keep running just to stay in one place. The idea of endless co-evolution through the maintenance of the genetic variation due to the curl flux could help explain the benefits of sexual reproduction, since the mixing and matching of genes preserves a greater diversity of traits. When a species' arms race with a co-evolving parasite takes an unexpected twist, a previously unnecessary trait could suddenly turn into the key to surviving. In the co-evolving world, there is no guarantee for "survival of the fittest" and it is often necessary to keep running for survival. The researchers publish their results in the American Institute of Physics' Journal of Chemical Physics.

Articles featured in AIP press releases will be freely accessible online for a minimum of 30 days following publication.

Article: "The potential and flux landscape theory of evolution" is accepted for publication in The Journal of Chemical Physics.

Link: http://jcp.aip.org/resource/1/jcpsa6/v137/i6/p065102_s1

Authors: Feng Zhang (1, 2), Li Xu (1), Kun Zhang (1), Erkang Wang (1), and Jin Wang (1, 2, 3).

(1) State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, China

(2) College of Physics, Jilin University, Jilin, China
(3) Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>