Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics and math shed new light on biology by mapping the landscape of evolution

09.08.2012
Although the qualitative description of evolution – its observed behavior and characteristics – is well-established, a comprehensive quantitative theory that captures general evolution dynamics is still lacking.

There are also many lingering mysteries surrounding the story of life on Earth, including the question of why sex is such a prevalent reproductive strategy. A team of scientists from the Chinese Academy of Sciences; Jilin University in Jilin, China; and the State University of New York at Stony Brook, led by Prof. Jin Wang, has examined some of these puzzles from a physical science prospective.

They propose a new theory of evolution with two ingredients: the underlying emergent "fitness" landscape and an associated evolutionary force called "curl flux," which causes species to move through the emergent fitness landscape in a spiraling manner.

The researchers captured evolutionary relationships in a system of equations. They then created quantitative pictures that visualized evolutionary pathways as journeys through a mountainous terrain of peaks and valleys of biological fitness. The key breakthrough beyond the conventional quantitative theory of evolution is the emergent curl flux, which is generated by interactions between individuals within or across species. The underlying emergent landscape gradient and the curl flux act together as a "Yin and Yang" duality pair to determine the dynamics of general evolution, says Wang. An example of similar behavior is the particle and wave duality that determines the dynamics of the quantum world, he notes. The researchers also note that this combined effect is analogous to the way electric and magnetic forces both act on electrons.

The new theory provides a physical foundation for general evolution dynamics. The researchers found that interactions between individuals of different species can give rise to the curl flux. This can sustain an endless evolution that does not lead to areas of higher relative fitness, even if the physical environment is unchanged.

This finding offers a theoretical framework to explain the Red Queen Hypothesis, which states that species continually evolve in order to fend off parasites that are themselves continually evolving. The hypothesis, first proposed by evolutionary biologist Leigh Van Valen in 1973, gets its name from the character of the Red Queen in Lewis Carroll's book Through the Looking-Glass, who observed that in her world it was necessary to keep running just to stay in one place. The idea of endless co-evolution through the maintenance of the genetic variation due to the curl flux could help explain the benefits of sexual reproduction, since the mixing and matching of genes preserves a greater diversity of traits. When a species' arms race with a co-evolving parasite takes an unexpected twist, a previously unnecessary trait could suddenly turn into the key to surviving. In the co-evolving world, there is no guarantee for "survival of the fittest" and it is often necessary to keep running for survival. The researchers publish their results in the American Institute of Physics' Journal of Chemical Physics.

Articles featured in AIP press releases will be freely accessible online for a minimum of 30 days following publication.

Article: "The potential and flux landscape theory of evolution" is accepted for publication in The Journal of Chemical Physics.

Link: http://jcp.aip.org/resource/1/jcpsa6/v137/i6/p065102_s1

Authors: Feng Zhang (1, 2), Li Xu (1), Kun Zhang (1), Erkang Wang (1), and Jin Wang (1, 2, 3).

(1) State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, China

(2) College of Physics, Jilin University, Jilin, China
(3) Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>