Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists unlock nature of high-temperature superconductivity


Physicists have identified the "quantum glue" that underlies a promising type of superconductivity -- a crucial step towards the creation of energy superhighways that conduct electricity without current loss.

The research, published online in the Proceedings of the National Academy of Sciences, is a collaboration between theoretical physicists led by Dirk Morr, professor of physics at the University of Illinois at Chicago, and experimentalists led by Seamus J.C. Davis of Cornell University and Brookhaven National Laboratory.

This is UIC physicist Dirk Morr, who worked with researchers at Brookhaven National Laboratory, says the findings were the result of 'the close collaboration of theory and experiment.'

Credit: Photo: Roberta Dupuis-Devlin/UIC Photo Services

The earliest superconducting materials required operating temperatures near absolute zero, or −459.67 degrees Fahrenheit. Newer unconventional or "high-temperature" superconductors function at slightly elevated temperatures and seemed to work differently from the first materials. Scientists hoped this difference hinted at the possibility of superconductors that could work at room temperature and be used to create energy superhighways.

Superconductivity arises when two electrons in a material become bound together, forming what is called a Cooper pair. Groundbreaking experiments performed by Freek Massee and Milan Allan in Davis's group were analyzed using a new theoretical framework developed at UIC by Morr and graduate student John Van Dyke, who is first author on the report.

Their results pointed to magnetism as the force underlying the superconductivity in an unconventional superconductor consisting of cerium, cobalt and indium, with the molecular formula CeCoIn5.

"For a long time, we were unable to develop a detailed theoretical understanding of this unconventional superconductor," said Morr, who is principal investigator on the study. Two crucial insights into the complex electronic structure of CeCoIn5 were missing, he said: the relation between the momentum and energy of electrons moving through the material, and the 'quantum glue' that binds the electrons into a Cooper pair.

Those questions were answered after the Davis group developed high-precision measurements of CeCoIn5 using a scanning tunneling spectroscopy technique called quasi-particle interference spectroscopy. Analysis of the spectra using a novel theoretical framework developed by Morr and Van Dyke allowed the researchers to extract the missing pieces of the puzzle.

The new insight allowed them to explore the 30-year-old hypothesis that the quantum glue of superconductivity is the magnetic force.

Magnetism is highly directional, Morr said.

"Knowing the directional dependence of the quantum glue, we were able, for the first time, to quantitatively predict the material's superconducting properties using a series of mathematical equations," he said.

"Our calculations showed that the gap possesses what's called a d-wave symmetry, implying that for certain directions the electrons were bound together very strongly, while they were not bound at all for other directions," Morr said. Directional dependence is one of the hallmarks of unconventional superconductors.

"We concluded that magnetism is the quantum glue underlying the emergence of unconventional superconductivity in CeCoIn5."

The finding has "lifted the fog of complexity" surrounding the material, Morr said, and was only made possible by "the close collaboration of theory and experiment, which is so crucial in advancing our understanding of complex systems."

"We now have an excellent starting point to explore how superconductivity works in other complex material," Morr said. "With a working theory, we can now investigate how we have to tweak the system to raise the critical temperature -- ideally, all the way up to room temperature."


In addition to those mentioned above, Cedomir Petrovic of Brookhaven National Laboratory is a co-author on the study.

The research was supported by the U.S. Department of Energy under Contract DEAC02‐98CH10886 at Brookhaven and Award DE‐FG02‐05ER46225 at UIC.

Jeanne Galatzer-Levy | Eurek Alert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>