Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists show that quantum ignorance is hard to expose

01.08.2011
The quantum world allows you to answer questions correctly when you don't even have all the information you should need

No-one likes a know-it-all but we expect to be able to catch them out: someone who acts like they know everything but doesn't can always be tripped up with a well-chosen question. Can't they? Not so. New research in quantum physics has shown that a quantum know-it-all could lack information about a subject as a whole, yet answer almost perfectly any question about the subject's parts. The work is published in Physical Review Letters.

"This is something conceptually very weird," says Stephanie Wehner of the Centre for Quantum Technologies at the National University of Singapore, who derived the theoretical result with PhD student Thomas Vidick at the University of California, Berkeley, United States. It's a new phenomenon to add to the list of philosophical conundrums in quantum physics – as strange as the quantum superposition or the quantum uncertainty principle. But the work also has practical motivation: understanding how information behaves in the quantum context is important in emerging technologies such as quantum cryptography and quantum computation.

To frame the problem, consider the example of someone answering questions about a book they have only half-read. If someone has incomplete knowledge about a book as a whole, one expects to be able to identify the source of their ignorance somewhere in the book's pages.

Wehner and Vidick simplify the situation to a book with two pages. They invite the usual quantum players, Alice and Bob, to collaborate. Alice reads the book and is allowed to give Bob one page's worth of information from it.

If Bob only has classical information, it is always possible to work out what he doesn't know. "We show that classically things are, well, sane" says Wehner. In other words, Bob's ignorance can be exposed. Imagine that Bob is a student trying to cheat in an exam, and the notes from Alice cover half the course. An examiner, having secretly inspected Bob's crib notes, could set questions that Bob couldn't answer.

The craziness comes if Bob gets one page's worth of quantum information from Alice. In this case, the researchers show, there is no-way to pinpoint what information Bob is missing. Challenge Bob, and he can guess either page of the book almost perfectly. An examiner could not expose Bob's ignorance even having seen his notes as long as the questions cover no more than half the course – the total amount of information Bob can recount cannot exceed the size of his notes.

It is an unexpected discovery. Researchers had been trying to prove that quantum ignorance would follow classical intuition and be traceable to ignorance of details, and finding that it isn't raises new questions. "We have observed this effect but we don't really understand where it comes from," says Wehner. An intuitive understanding may be forever out of reach, just as other effects in quantum theory defy mechanistic description. However, Wehner and Vidick have begun to design experimental tests and are already formulating a range of ways to explore this strange new frontier. In this work, they devised a means of encoding the quantum information from two pages into one that gave Bob, the quantum know-it-all, the ability to recount all but one bit of the information on either page (the last bit Bob would have to guess). They plan to test whether other encodings would be equally good.

Journal reference: T. Vidick and S. Wehner, "Does Ignorance of the Whole Imply Ignorance of the Parts? Large Violations of Noncontextuality in Quantum Theory", Physical Review Letters 107, 030402 (2011); http://prl.aps.org/abstract/PRL/v107/i3/e030402. A free preprint is available at http://arxiv.org/abs/1011.6448.

For more information, please contact:
Stephanie Wehner
Principal Investigator and Assistant Professor
Centre for Quantum Technologies
National University of Singapore
Email: wehner@comp.nus.edu.sg
Tel: +65 6601 1478
National University of Singapore
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore's flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.

NUS has 15 faculties and schools across three campus locations in Singapore – Kent Ridge, Bukit Timah and Outram. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment, as well as special programmes which allow students to realise their potential.

NUS has three Research Centres of Excellence (RCE) and 21 university-level research institutes and centres.

It is also a partner for Singapore's 5th RCE. The University shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community. More at www.nus.edu.sg.

Centre for Quantum Technologies at the National University of Singapore

The Centre for Quantum Technologies (CQT) was established as Singapore's inaugural Research Centre of Excellence in December 2007. It brings together quantum physicists and computer scientists to explore the quantum nature of reality and quantum possibilities in information processing. CQT is funded by Singapore's National Research Foundation and Ministry of Education and is hosted by the National University of Singapore (NUS). More at www.quantumlah.org.

Jenny Hogan | EurekAlert!
Further information:
http://www.quantumlah.org

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>