Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists show that quantum ignorance is hard to expose

01.08.2011
The quantum world allows you to answer questions correctly when you don't even have all the information you should need

No-one likes a know-it-all but we expect to be able to catch them out: someone who acts like they know everything but doesn't can always be tripped up with a well-chosen question. Can't they? Not so. New research in quantum physics has shown that a quantum know-it-all could lack information about a subject as a whole, yet answer almost perfectly any question about the subject's parts. The work is published in Physical Review Letters.

"This is something conceptually very weird," says Stephanie Wehner of the Centre for Quantum Technologies at the National University of Singapore, who derived the theoretical result with PhD student Thomas Vidick at the University of California, Berkeley, United States. It's a new phenomenon to add to the list of philosophical conundrums in quantum physics – as strange as the quantum superposition or the quantum uncertainty principle. But the work also has practical motivation: understanding how information behaves in the quantum context is important in emerging technologies such as quantum cryptography and quantum computation.

To frame the problem, consider the example of someone answering questions about a book they have only half-read. If someone has incomplete knowledge about a book as a whole, one expects to be able to identify the source of their ignorance somewhere in the book's pages.

Wehner and Vidick simplify the situation to a book with two pages. They invite the usual quantum players, Alice and Bob, to collaborate. Alice reads the book and is allowed to give Bob one page's worth of information from it.

If Bob only has classical information, it is always possible to work out what he doesn't know. "We show that classically things are, well, sane" says Wehner. In other words, Bob's ignorance can be exposed. Imagine that Bob is a student trying to cheat in an exam, and the notes from Alice cover half the course. An examiner, having secretly inspected Bob's crib notes, could set questions that Bob couldn't answer.

The craziness comes if Bob gets one page's worth of quantum information from Alice. In this case, the researchers show, there is no-way to pinpoint what information Bob is missing. Challenge Bob, and he can guess either page of the book almost perfectly. An examiner could not expose Bob's ignorance even having seen his notes as long as the questions cover no more than half the course – the total amount of information Bob can recount cannot exceed the size of his notes.

It is an unexpected discovery. Researchers had been trying to prove that quantum ignorance would follow classical intuition and be traceable to ignorance of details, and finding that it isn't raises new questions. "We have observed this effect but we don't really understand where it comes from," says Wehner. An intuitive understanding may be forever out of reach, just as other effects in quantum theory defy mechanistic description. However, Wehner and Vidick have begun to design experimental tests and are already formulating a range of ways to explore this strange new frontier. In this work, they devised a means of encoding the quantum information from two pages into one that gave Bob, the quantum know-it-all, the ability to recount all but one bit of the information on either page (the last bit Bob would have to guess). They plan to test whether other encodings would be equally good.

Journal reference: T. Vidick and S. Wehner, "Does Ignorance of the Whole Imply Ignorance of the Parts? Large Violations of Noncontextuality in Quantum Theory", Physical Review Letters 107, 030402 (2011); http://prl.aps.org/abstract/PRL/v107/i3/e030402. A free preprint is available at http://arxiv.org/abs/1011.6448.

For more information, please contact:
Stephanie Wehner
Principal Investigator and Assistant Professor
Centre for Quantum Technologies
National University of Singapore
Email: wehner@comp.nus.edu.sg
Tel: +65 6601 1478
National University of Singapore
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore's flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.

NUS has 15 faculties and schools across three campus locations in Singapore – Kent Ridge, Bukit Timah and Outram. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment, as well as special programmes which allow students to realise their potential.

NUS has three Research Centres of Excellence (RCE) and 21 university-level research institutes and centres.

It is also a partner for Singapore's 5th RCE. The University shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community. More at www.nus.edu.sg.

Centre for Quantum Technologies at the National University of Singapore

The Centre for Quantum Technologies (CQT) was established as Singapore's inaugural Research Centre of Excellence in December 2007. It brings together quantum physicists and computer scientists to explore the quantum nature of reality and quantum possibilities in information processing. CQT is funded by Singapore's National Research Foundation and Ministry of Education and is hosted by the National University of Singapore (NUS). More at www.quantumlah.org.

Jenny Hogan | EurekAlert!
Further information:
http://www.quantumlah.org

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>