Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Set New Record for Quantum Memory Storage

09.12.2008
Physicists have taken a significant step toward creation of quantum networks by establishing a new record for the length of time that quantum information can be stored in and retrieved from an ensemble of very cold atoms. Though the information remains usable for just milliseconds, even that short lifetime should be enough to allow transmission of data from one quantum repeater to another on an optical network.

The new record – 7 milliseconds for rubidium atoms stored in a dipole optical trap – is scheduled to be reported December 7 in the online version of the journal Nature Physics by researchers at the Georgia Institute of Technology. The previous record for storage time was 32 microseconds, a difference of more than two orders of magnitude.

“This is a really significant step for us, because conceptually it allows long memory times necessary for long-distance quantum networking,” said Alex Kuzmich, associate professor in the Georgia Tech School of Physics and a co-author of the paper. “For multiple architectures with many memory elements, several milliseconds would allow the movement of light across a thousand kilometers.”

The keys to extending the storage time included the use of a one-dimensional optical lattice to help confine the atoms and selection of an atomic phase that is insensitive to magnetic effects. The research was sponsored by the National Science Foundation, the A.P. Sloan Foundation and the U.S. Office of Naval Research.

The general purpose of quantum networking or quantum computing is to distribute entangled qubits – two correlated data bits that are either “0” or “1” – over long distances. The qubits would travel as photons across existing optical networks that are part of the global telecommunications system.

Because of loss in the optical fiber that makes up networks, repeaters must be installed at regular intervals – about every 100 kilometers – to boost the signal. Those repeaters will need quantum memory to receive the photonic signal, store it briefly and then produce a photonic signal that will carry the information to the next node, and on to its final destination.

For their memory, the Georgia Tech researchers used an ensemble of rubidium-87 atoms that is cooled to almost absolute zero to minimize atomic motion. To store information, the entire atomic ensemble is exposed to laser light carrying a signal, which allows each atom to participate in the storage as part of a “collective excitation.”

In simple terms, each atom “sees” the incoming signal – which is a rapidly oscillating electromagnetic field – slightly differently. Each atom is therefore imprinted with phase information that can later be “read” from the ensemble with another laser.

Even though they are very cold, the atoms of the ensemble are free to move in a random way. Because each atom stores a portion of the quantum information and that data’s usefulness depends on each atom’s location in reference to other atoms, significant movement of the atoms could destroy the information.

“The challenge for us in implementing these long-lived quantum memories is to preserve the phase imprinting in the atomic ensemble for as long as possible,” explained Stewart Jenkins, a School of Physics research scientist who participated in the research. “It turns out that is difficult to do experimentally.”

To extend the lifetime of their memory, the Georgia Tech researchers took two approaches. The first was to confine the atoms using an optical lattice composed of laser beams. Because of the laser frequencies chosen, the atoms are attracted to specific locations within the lattice, though they are not held tightly in place.

Because the ensemble atoms are affected by environmental conditions such as magnetism, the second strategy was to use atoms that had been pumped to the so-called “clock transition state” that is relatively insensitive to magnetic fields.

“The most critical aspect to getting these long coherence times was the optical lattice,” Jenkins explained. “Although atoms had been confined in optical lattices before, what we did was to use this tool in the context of implementing quantum memory.”

Other research teams have stored quantum information in single atoms or ions. This simpler approach allows longer storage periods, but has limitations, he said.

“The advantage of using these ensembles as opposed to single atoms is that if we shine into them a ‘read’ laser field, because these atoms have a particular phase imprinted on them, we know with a high degree of probability that we are going to get a second photon – the idler photon – coming out in a particular direction,” Jenkins explained. “That allows us to put a detector in the right location to read the photon.”

Though the work significantly advances quantum memories, practical quantum networks probably are at least a decade away, Kuzmich believes.

“In practice, you will need to make robust repeater nodes with hundreds of memory elements that can be quickly manipulated and coupled to the fiber,” he said. “There is likely to be slow progress in this area with researchers gaining better and better control of quantum systems. Eventually, they will get good enough so we can make a jump to having systems that can work outside the laboratory environment.”

In addition to Kuzmich and Jenkins, the research team included Ran Zhao, Yaroslav Dudin, Corey Campbell, Dzmitry Matsukevich, and Brian Kennedy, a professor in the School of Physics.

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms

05.12.2016 | Life Sciences

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>