Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists seek to keep next-gen colliders in 1 piece

07.10.2009
Controlling huge electromagnetic forces that have the potential to destroy the next generation of particle accelerators is the subject of a new paper by a University of Manchester physicist.

So-called 'wake fields' occur during the process of acceleration and can cause particles to fly apart.

The particles are travelling at extremely high energies – and if they are subjected to these wake fields, they can easily destroy the accelerators.

In his paper 'Wake field Suppression in High Gradient Linacs for Lepton Linear Colliders', accelerator physicist Professor Roger Jones examines research into the suppression of these wake fields.

The challenge, he says, is finding a way to suppress wake fields sufficiently while still maintaining a high acceleration field to perform particle collisions.

Prof Jones said: "Wake fields have been carefully controlled and suppressed in the Large Hadron Collider (LHC) at CERN. However, physicists are now looking at what comes after the LHC.

"An electron-positron collider is the natural successor to the LHC and it turns out the wake fields are much more severe in these linear collider machines.

"Indeed, acceleration of particles to ultra-relativistic energies over several tens of kilometres in the proposed Compact Linear Collider (CLIC), for example, poses several significant accelerator physics challenges to designers of these immense machines.

"Beams consisting of several hundred bunches of tightly focussed charged particles can readily excite intense wake fields, forcing the bunches to fly apart."

In his conclusions, Prof Jones suggests two approaches to mitigate for the effects of these extreme wake fields.

One approach entails heavy damping, in which the majority of the wake field is sucked out of the collider by structures, known as waveguides, coupled to each cell in the accelerator.

A second approach entails light damping - in which a small portion is removed - in combination with detuning the cell frequencies of the accelerator.

Prof Jones adds: "Detuning the wake field can be understood by thinking about acoustics. If you have a collection of huge bells all ringing at slightly different frequencies or tones, the amplitude or 'wave height' of the overall sound heard will be markedly smaller than that heard if they all ring at the same tone. This method is very efficient and structures built in this manner are known as a Damped Detuned Structures (DDS).

"Detuning is perhaps more elegant than heavy damping as it also enables the position of the beam to be determined by the quantity of wake fields radiated by the beam – in this way a DDS accelerator removes the wake fields and has its own built-in diagnostic."

The DDS concept was developed by Prof Jones and colleagues during one and a half decades spent working at the SLAC National Laboratory at Stanford University in the United States.

Whilst at the University of Manchester, he has recently developed this method to apply to the CLIC 3 TeV centre of mass collider being developed at CERN. More than 143,000 of these accelerating structures will be needed for the CLIC.

Prof Jones added: "At this stage, both means of wake field suppression should be pursued in order to thoroughly assess their applicability. Experimental testing, using realistic pulse lengths and at the high gradients planned for the linear collider, will be the final test on the suitability of these techniques."

Prof Jones has undertaken research into wake field suppression over the last 20 years – the last four of which have been spent at The University of Manchester's School of Physics and Astronomy and at The Cockroft Institute of Accelerator Science and Technology, based at the Daresbury Laboratory in Cheshire..

Prof Jones' review article is due to be published online in 'Physical Review Special Topics - Accelerators and Beams' on Monday 5 October.

The Cockroft Institute (www.cockroft.ac.uk) was officially opened in September 2006 and is an international centre for Accelerator Science and Technology (AST) in the UK. It is a joint venture of Lancaster University, the Universities of Liverpool and Manchester, the Science and Technology Facilities Council (STFC) and the North West Development Agency (NWDA). The Institute is located in a purpose-built building on the Daresbury Laboratory campus and in centres in each of the participating universities. For more information see www.cockroft.ac.uk.

The proposed CLIC (Compact Linear Collider) at CERN is an electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. It would provide significant fundamental physics information even beyond that available from the LHC, offering a unique combination of high energy and experimental precision. For more information visit www.cern.ch

Alex Waddington | EurekAlert!
Further information:
http://www.manchester.ac.uk
http://www.cern.ch
http://www.cockroft.ac.uk

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>