Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists seek to keep next-gen colliders in 1 piece

07.10.2009
Controlling huge electromagnetic forces that have the potential to destroy the next generation of particle accelerators is the subject of a new paper by a University of Manchester physicist.

So-called 'wake fields' occur during the process of acceleration and can cause particles to fly apart.

The particles are travelling at extremely high energies – and if they are subjected to these wake fields, they can easily destroy the accelerators.

In his paper 'Wake field Suppression in High Gradient Linacs for Lepton Linear Colliders', accelerator physicist Professor Roger Jones examines research into the suppression of these wake fields.

The challenge, he says, is finding a way to suppress wake fields sufficiently while still maintaining a high acceleration field to perform particle collisions.

Prof Jones said: "Wake fields have been carefully controlled and suppressed in the Large Hadron Collider (LHC) at CERN. However, physicists are now looking at what comes after the LHC.

"An electron-positron collider is the natural successor to the LHC and it turns out the wake fields are much more severe in these linear collider machines.

"Indeed, acceleration of particles to ultra-relativistic energies over several tens of kilometres in the proposed Compact Linear Collider (CLIC), for example, poses several significant accelerator physics challenges to designers of these immense machines.

"Beams consisting of several hundred bunches of tightly focussed charged particles can readily excite intense wake fields, forcing the bunches to fly apart."

In his conclusions, Prof Jones suggests two approaches to mitigate for the effects of these extreme wake fields.

One approach entails heavy damping, in which the majority of the wake field is sucked out of the collider by structures, known as waveguides, coupled to each cell in the accelerator.

A second approach entails light damping - in which a small portion is removed - in combination with detuning the cell frequencies of the accelerator.

Prof Jones adds: "Detuning the wake field can be understood by thinking about acoustics. If you have a collection of huge bells all ringing at slightly different frequencies or tones, the amplitude or 'wave height' of the overall sound heard will be markedly smaller than that heard if they all ring at the same tone. This method is very efficient and structures built in this manner are known as a Damped Detuned Structures (DDS).

"Detuning is perhaps more elegant than heavy damping as it also enables the position of the beam to be determined by the quantity of wake fields radiated by the beam – in this way a DDS accelerator removes the wake fields and has its own built-in diagnostic."

The DDS concept was developed by Prof Jones and colleagues during one and a half decades spent working at the SLAC National Laboratory at Stanford University in the United States.

Whilst at the University of Manchester, he has recently developed this method to apply to the CLIC 3 TeV centre of mass collider being developed at CERN. More than 143,000 of these accelerating structures will be needed for the CLIC.

Prof Jones added: "At this stage, both means of wake field suppression should be pursued in order to thoroughly assess their applicability. Experimental testing, using realistic pulse lengths and at the high gradients planned for the linear collider, will be the final test on the suitability of these techniques."

Prof Jones has undertaken research into wake field suppression over the last 20 years – the last four of which have been spent at The University of Manchester's School of Physics and Astronomy and at The Cockroft Institute of Accelerator Science and Technology, based at the Daresbury Laboratory in Cheshire..

Prof Jones' review article is due to be published online in 'Physical Review Special Topics - Accelerators and Beams' on Monday 5 October.

The Cockroft Institute (www.cockroft.ac.uk) was officially opened in September 2006 and is an international centre for Accelerator Science and Technology (AST) in the UK. It is a joint venture of Lancaster University, the Universities of Liverpool and Manchester, the Science and Technology Facilities Council (STFC) and the North West Development Agency (NWDA). The Institute is located in a purpose-built building on the Daresbury Laboratory campus and in centres in each of the participating universities. For more information see www.cockroft.ac.uk.

The proposed CLIC (Compact Linear Collider) at CERN is an electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. It would provide significant fundamental physics information even beyond that available from the LHC, offering a unique combination of high energy and experimental precision. For more information visit www.cern.ch

Alex Waddington | EurekAlert!
Further information:
http://www.manchester.ac.uk
http://www.cern.ch
http://www.cockroft.ac.uk

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>