Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists seek to keep next-gen colliders in 1 piece

07.10.2009
Controlling huge electromagnetic forces that have the potential to destroy the next generation of particle accelerators is the subject of a new paper by a University of Manchester physicist.

So-called 'wake fields' occur during the process of acceleration and can cause particles to fly apart.

The particles are travelling at extremely high energies – and if they are subjected to these wake fields, they can easily destroy the accelerators.

In his paper 'Wake field Suppression in High Gradient Linacs for Lepton Linear Colliders', accelerator physicist Professor Roger Jones examines research into the suppression of these wake fields.

The challenge, he says, is finding a way to suppress wake fields sufficiently while still maintaining a high acceleration field to perform particle collisions.

Prof Jones said: "Wake fields have been carefully controlled and suppressed in the Large Hadron Collider (LHC) at CERN. However, physicists are now looking at what comes after the LHC.

"An electron-positron collider is the natural successor to the LHC and it turns out the wake fields are much more severe in these linear collider machines.

"Indeed, acceleration of particles to ultra-relativistic energies over several tens of kilometres in the proposed Compact Linear Collider (CLIC), for example, poses several significant accelerator physics challenges to designers of these immense machines.

"Beams consisting of several hundred bunches of tightly focussed charged particles can readily excite intense wake fields, forcing the bunches to fly apart."

In his conclusions, Prof Jones suggests two approaches to mitigate for the effects of these extreme wake fields.

One approach entails heavy damping, in which the majority of the wake field is sucked out of the collider by structures, known as waveguides, coupled to each cell in the accelerator.

A second approach entails light damping - in which a small portion is removed - in combination with detuning the cell frequencies of the accelerator.

Prof Jones adds: "Detuning the wake field can be understood by thinking about acoustics. If you have a collection of huge bells all ringing at slightly different frequencies or tones, the amplitude or 'wave height' of the overall sound heard will be markedly smaller than that heard if they all ring at the same tone. This method is very efficient and structures built in this manner are known as a Damped Detuned Structures (DDS).

"Detuning is perhaps more elegant than heavy damping as it also enables the position of the beam to be determined by the quantity of wake fields radiated by the beam – in this way a DDS accelerator removes the wake fields and has its own built-in diagnostic."

The DDS concept was developed by Prof Jones and colleagues during one and a half decades spent working at the SLAC National Laboratory at Stanford University in the United States.

Whilst at the University of Manchester, he has recently developed this method to apply to the CLIC 3 TeV centre of mass collider being developed at CERN. More than 143,000 of these accelerating structures will be needed for the CLIC.

Prof Jones added: "At this stage, both means of wake field suppression should be pursued in order to thoroughly assess their applicability. Experimental testing, using realistic pulse lengths and at the high gradients planned for the linear collider, will be the final test on the suitability of these techniques."

Prof Jones has undertaken research into wake field suppression over the last 20 years – the last four of which have been spent at The University of Manchester's School of Physics and Astronomy and at The Cockroft Institute of Accelerator Science and Technology, based at the Daresbury Laboratory in Cheshire..

Prof Jones' review article is due to be published online in 'Physical Review Special Topics - Accelerators and Beams' on Monday 5 October.

The Cockroft Institute (www.cockroft.ac.uk) was officially opened in September 2006 and is an international centre for Accelerator Science and Technology (AST) in the UK. It is a joint venture of Lancaster University, the Universities of Liverpool and Manchester, the Science and Technology Facilities Council (STFC) and the North West Development Agency (NWDA). The Institute is located in a purpose-built building on the Daresbury Laboratory campus and in centres in each of the participating universities. For more information see www.cockroft.ac.uk.

The proposed CLIC (Compact Linear Collider) at CERN is an electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. It would provide significant fundamental physics information even beyond that available from the LHC, offering a unique combination of high energy and experimental precision. For more information visit www.cern.ch

Alex Waddington | EurekAlert!
Further information:
http://www.manchester.ac.uk
http://www.cern.ch
http://www.cockroft.ac.uk

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>