Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists seek to keep next-gen colliders in 1 piece

Controlling huge electromagnetic forces that have the potential to destroy the next generation of particle accelerators is the subject of a new paper by a University of Manchester physicist.

So-called 'wake fields' occur during the process of acceleration and can cause particles to fly apart.

The particles are travelling at extremely high energies – and if they are subjected to these wake fields, they can easily destroy the accelerators.

In his paper 'Wake field Suppression in High Gradient Linacs for Lepton Linear Colliders', accelerator physicist Professor Roger Jones examines research into the suppression of these wake fields.

The challenge, he says, is finding a way to suppress wake fields sufficiently while still maintaining a high acceleration field to perform particle collisions.

Prof Jones said: "Wake fields have been carefully controlled and suppressed in the Large Hadron Collider (LHC) at CERN. However, physicists are now looking at what comes after the LHC.

"An electron-positron collider is the natural successor to the LHC and it turns out the wake fields are much more severe in these linear collider machines.

"Indeed, acceleration of particles to ultra-relativistic energies over several tens of kilometres in the proposed Compact Linear Collider (CLIC), for example, poses several significant accelerator physics challenges to designers of these immense machines.

"Beams consisting of several hundred bunches of tightly focussed charged particles can readily excite intense wake fields, forcing the bunches to fly apart."

In his conclusions, Prof Jones suggests two approaches to mitigate for the effects of these extreme wake fields.

One approach entails heavy damping, in which the majority of the wake field is sucked out of the collider by structures, known as waveguides, coupled to each cell in the accelerator.

A second approach entails light damping - in which a small portion is removed - in combination with detuning the cell frequencies of the accelerator.

Prof Jones adds: "Detuning the wake field can be understood by thinking about acoustics. If you have a collection of huge bells all ringing at slightly different frequencies or tones, the amplitude or 'wave height' of the overall sound heard will be markedly smaller than that heard if they all ring at the same tone. This method is very efficient and structures built in this manner are known as a Damped Detuned Structures (DDS).

"Detuning is perhaps more elegant than heavy damping as it also enables the position of the beam to be determined by the quantity of wake fields radiated by the beam – in this way a DDS accelerator removes the wake fields and has its own built-in diagnostic."

The DDS concept was developed by Prof Jones and colleagues during one and a half decades spent working at the SLAC National Laboratory at Stanford University in the United States.

Whilst at the University of Manchester, he has recently developed this method to apply to the CLIC 3 TeV centre of mass collider being developed at CERN. More than 143,000 of these accelerating structures will be needed for the CLIC.

Prof Jones added: "At this stage, both means of wake field suppression should be pursued in order to thoroughly assess their applicability. Experimental testing, using realistic pulse lengths and at the high gradients planned for the linear collider, will be the final test on the suitability of these techniques."

Prof Jones has undertaken research into wake field suppression over the last 20 years – the last four of which have been spent at The University of Manchester's School of Physics and Astronomy and at The Cockroft Institute of Accelerator Science and Technology, based at the Daresbury Laboratory in Cheshire..

Prof Jones' review article is due to be published online in 'Physical Review Special Topics - Accelerators and Beams' on Monday 5 October.

The Cockroft Institute ( was officially opened in September 2006 and is an international centre for Accelerator Science and Technology (AST) in the UK. It is a joint venture of Lancaster University, the Universities of Liverpool and Manchester, the Science and Technology Facilities Council (STFC) and the North West Development Agency (NWDA). The Institute is located in a purpose-built building on the Daresbury Laboratory campus and in centres in each of the participating universities. For more information see

The proposed CLIC (Compact Linear Collider) at CERN is an electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. It would provide significant fundamental physics information even beyond that available from the LHC, offering a unique combination of high energy and experimental precision. For more information visit

Alex Waddington | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>