Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Reveal Novel Magnetoelectric Effect

14.02.2014
Mechanism may provide route for for using multiferroic materials in RAM

New research at the University of Arkansas reveals a novel magnetoelectric effect that makes it possible to control magnetism with an electric field.

The novel mechanism may provide a new route for using multiferroic materials for the application of RAM (random access memories) in computers and other devices, such as printers.

An international research team, led by U of A physicists, reported its findings in an article titled, “Prediction of a Novel Magnetoelectric Switching Mechanism in Multiferroics,” on Feb. 5 in the journal Physical Review Letters.

The researchers studied a new predicted state of the multiferroic bismuth ferrite, a compound that can change its electrical polarization when under a magnetic field or magnetic properties when under an electric field. Because of these effects, bismuth ferrite interests researchers who want to design novel devices — based on magnetoelectric conversion.

The “coupling mechanism” in bismuth ferrite between magnetic order and electrical polarization order is required for this phenomenon to be clearly understood, said Yurong Yang, a research assistant professor of physics in the J. William Fulbright College of Arts and Sciences.

“We discovered an unknown magnetoelectric switching mechanism,” Yang said. “In this mechanism, the magnetic order and electrical polarization are not coupled directly, they are coupled with oxygen octahedral tilting, respectively. The switching polarization by electric field leads to the change of the sense of the rotation of oxygen octahedral, which in turn induces the switching of the magnetic order.

“These two couplings are governed by an interaction between three different physical quantities, called ‘tri-linear coupling,’ he said. “In contrast with the trilinear-coupling effects in the literature, the new coupling involves a large polarization and thus can be easily tuned by an electric field.”

Yang performed calculations with the assistance of the Arkansas High Performing Computing Center at the University of Arkansas. He was joined in the study by Laurent Bellaiche, a Distinguished Professor of physics at the U of A. Bellaiche and Yang conducted their research in the university’s Institute for Nanoscience and Engineering.

Also collaborating on the paper were Jorge Iniguez of the Materials Science Institute at the Autonomous University of Barcelona in Spain and Ai-Jie Mao of the Institute of Atomic and Molecular Physics at Sichuan University in China.

Contacts:
Yurong Yang, research assistant professor, physics
J. William Fulbright College of Arts and Sciences
479-575-2019, yyrwater@uark.edu
Laurent Bellaiche, Distinguished Professor, physics
J. William Fulbright College of Arts and Sciences
479-575-6425, laurent@uark.edu

Chris Branam | Newswise
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht Pockets of Calm Protect Molecules Around a Supermassive Black Hole
27.02.2015 | National Radio Astronomy Observatory

nachricht Ultra-Thin Nanowires Can Trap Electron ‘Twisters’ That Disrupt Superconductors
26.02.2015 | Johns Hopkins University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

European Geosciences Union meeting: programme online, provisional press conference topics

26.02.2015 | Event News

Round Table on Solar Energy Research

18.02.2015 | Event News

40th FEBS Congress 2015 – The Biochemical Basis of Life

09.02.2015 | Event News

 
Latest News

Researchers create self-reconstructive metal wire utilizing electric field trapping of gold nanoparticles

27.02.2015 | Power and Electrical Engineering

Climate-Change Clues From the Turtles of Tropical Wyoming

27.02.2015 | Ecology, The Environment and Conservation

Pockets of Calm Protect Molecules Around a Supermassive Black Hole

27.02.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>