Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists offer new theory for iron compounds

16.03.2009
Theory makes predictions about latest high-temp superconductor

An international team of physicists from the United States and China this week offered a new theory to both explain and predict the complex quantum behavior of a new class of high-temperature superconductors.

The findings, which are available online this week from the Proceedings of the National Academy of Sciences, are about materials known as iron pnictides (pronounced NIK-tides). The discovery of high-temperature superconductivity in pnictides a year ago is a boon for physicists who have struggled for more than two decades to explain the phenomena based on observations from a class of copper-based superconductors called cuprates (pronounced COO-prayts).

"Our research addresses the quantum magnetic fluctuations that have been observed in iron pnictides and offers a theory to explain how electron-electron interactions govern this behavior," said study co-author Qimiao Si, a physicist from Rice University. "The origins of superconductivity are believed to be rooted in these effects, so understanding them is extremely important."

In the PNAS paper, Si and collaborators from Rutgers University, Zhejiang University and the Los Alamos National Laboratory explain some of the similarities and differences between cuprates and pnictides. Under certain circumstances, the atomic arrangements in both materials cause electrons to behave collectively, marching in lock step with one another. Experimental physicists study how changes in temperature, magnetic fields and the like cause the coordinated effects to change. They also look for changes arising from differences in the way the compounds are prepared, such as when other substances are added via a technique called "doping."

"In cuprates, the parent compounds are not metallic, and they only become superconducting when they are doped," said Rutgers University physicist and co-author Elihu Abrahams. "In contrast, the parent compounds of pnictides are metallic, but like the undoped cuprates they exhibit a quantum magnetic property called antiferromagnetism."

Based on what's known about electron-electron interactions and about antiferromagnetism in other metals, the authors created a theoretical framework to explain the behavior of the pnictides, offering some specific predictions about how they will behave as they change phases.

Matter is commonly transformed when it changes phases; the melting of ice, for example, marks water's change from a solid phase to a liquid phase. In materials like cuprates and pnictides, the tendency of electrons to act in concert can lead to "quantum" phase changes, shifts from one phase to another that arise entirely from the movements of subatomic particles. The study of quantum "critical points," the tipping points that mark these phase changes, is known as "quantum criticality."

"Our work opens up the iron pnictides as a new setting to study the rich complexities of quantum criticality," said Si. "This is much needed since quantum critical points, which are believed to be important for a wide range of quantum materials, have so far been observed in only a small number of materials."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>