Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists observe magnetism in gas for the first time

06.10.2009
An international team of physicists has for the first time observed magnetic behaviour in an atomic gas, addressing a decades-old debate as to whether it is possible for a gas or liquid to become ferromagnetic and exhibit magnetic properties.

“Magnets are all around us – holding postcards on the refrigerator, pointing to magnetic north on a compass, and in speakers and headphones – yet some mysteries remain,” says Joseph H. Thywissen, a professor of physics at the University of Toronto and a visiting member of the Massachusetts Institute of Technology-based team leading the research. “We have perhaps found the simplest situation in which permanent magnetism can exist."

The scientists observed the behaviour in a gas of lithium atoms trapped in the focus of an infrared laser beam. The gas was cooled to 150 nK, less than a millionth of a degree above absolute zero, which is at -273 C. When repulsive forces between the atoms were gradually increased, several features indicated that the gas had become ferromagnetic. The cloud first became bigger and then suddenly shrunk, and when the atoms were released from the trap, they suddenly expanded faster. These observations were reported in the 18 Sept 2009 issue of Science, in a paper titled “Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms”.

This and other observations agreed with theoretical predictions for a transition to a ferromagnetic state. Ferromagnetic materials are those that, below a specific temperature, become magnetized even in the absence of a strong magnetic field. In common magnets, such as iron and nickel that consist of a repeating crystal structure, ferromagnetism occurs when unpaired electrons within the material spontaneously align in the same direction.

“Magnetism only occurs in a strongly interacting regime, where calculations – even using today’s fastest computers – are difficult,” says Thywissen. “Since naturally occurring gases do not have strong enough interactions to address the question, we turned to ultra-cold gases for answers.”

If confirmed, these results may enter textbooks on magnetism, showing that a gas of fermions does not need a crystalline structure to exhibit magnetic properties. “The evidence is pretty strong, but it is not yet a slam dunk,” says MIT physics professor and co-principal investigator David E. Pritchard. “We were not able to observe regions where the atoms all point in the same direction. They started to form molecules and may not have had enough time to align themselves.”

Thywissen's interest in the topic of ultra-cold ferromagnetism originated in theoretical work at Toronto led by Professor Arun Paramekanti in the physics department, along with graduate student Lindsay LeBlanc. "We assumed that ferromagnetism did exist for a gas, and then asked what its properties would be," explains LeBlanc. "Surprisingly, we found there were simple energetic signatures of ferromagnetism – that were eventually observed at MIT."

At MIT, the team was led by principal investigator Wolfgang Ketterle, and included graduate students Gyu-Boong Jo, Ye-Ryoung Lee and Caleb A. Christensen, post-doctoral associate Jae-Hoon Choi, and undergraduate student Tony H. Kim. Thywissen is affiliated with the University of Toronto’s Centre of Quantum Information and Quantum Control, and is a Senior Fellow at Massey College.

Canadian funding agencies include the National Science and Engineering Research Council (NSERC) and the Canadian Institute for Advanced Research (CIfAR). US funding included the National Science Foundation, the Office of Naval Research, through a Multidisciplinary University Research Initiative (MURI) program, and by the Army Research Office with funds from the Defense Advanced Research Projects Agency (DARPA) Optical Lattice Emulator (OLE) program.

MEDIA CONTACTS:

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>