Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists observe magnetism in gas for the first time

06.10.2009
An international team of physicists has for the first time observed magnetic behaviour in an atomic gas, addressing a decades-old debate as to whether it is possible for a gas or liquid to become ferromagnetic and exhibit magnetic properties.

“Magnets are all around us – holding postcards on the refrigerator, pointing to magnetic north on a compass, and in speakers and headphones – yet some mysteries remain,” says Joseph H. Thywissen, a professor of physics at the University of Toronto and a visiting member of the Massachusetts Institute of Technology-based team leading the research. “We have perhaps found the simplest situation in which permanent magnetism can exist."

The scientists observed the behaviour in a gas of lithium atoms trapped in the focus of an infrared laser beam. The gas was cooled to 150 nK, less than a millionth of a degree above absolute zero, which is at -273 C. When repulsive forces between the atoms were gradually increased, several features indicated that the gas had become ferromagnetic. The cloud first became bigger and then suddenly shrunk, and when the atoms were released from the trap, they suddenly expanded faster. These observations were reported in the 18 Sept 2009 issue of Science, in a paper titled “Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms”.

This and other observations agreed with theoretical predictions for a transition to a ferromagnetic state. Ferromagnetic materials are those that, below a specific temperature, become magnetized even in the absence of a strong magnetic field. In common magnets, such as iron and nickel that consist of a repeating crystal structure, ferromagnetism occurs when unpaired electrons within the material spontaneously align in the same direction.

“Magnetism only occurs in a strongly interacting regime, where calculations – even using today’s fastest computers – are difficult,” says Thywissen. “Since naturally occurring gases do not have strong enough interactions to address the question, we turned to ultra-cold gases for answers.”

If confirmed, these results may enter textbooks on magnetism, showing that a gas of fermions does not need a crystalline structure to exhibit magnetic properties. “The evidence is pretty strong, but it is not yet a slam dunk,” says MIT physics professor and co-principal investigator David E. Pritchard. “We were not able to observe regions where the atoms all point in the same direction. They started to form molecules and may not have had enough time to align themselves.”

Thywissen's interest in the topic of ultra-cold ferromagnetism originated in theoretical work at Toronto led by Professor Arun Paramekanti in the physics department, along with graduate student Lindsay LeBlanc. "We assumed that ferromagnetism did exist for a gas, and then asked what its properties would be," explains LeBlanc. "Surprisingly, we found there were simple energetic signatures of ferromagnetism – that were eventually observed at MIT."

At MIT, the team was led by principal investigator Wolfgang Ketterle, and included graduate students Gyu-Boong Jo, Ye-Ryoung Lee and Caleb A. Christensen, post-doctoral associate Jae-Hoon Choi, and undergraduate student Tony H. Kim. Thywissen is affiliated with the University of Toronto’s Centre of Quantum Information and Quantum Control, and is a Senior Fellow at Massey College.

Canadian funding agencies include the National Science and Engineering Research Council (NSERC) and the Canadian Institute for Advanced Research (CIfAR). US funding included the National Science Foundation, the Office of Naval Research, through a Multidisciplinary University Research Initiative (MURI) program, and by the Army Research Office with funds from the Defense Advanced Research Projects Agency (DARPA) Optical Lattice Emulator (OLE) program.

MEDIA CONTACTS:

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>