Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Observe Electron Ejected from Atom for First Time

13.10.2010
Air Force Office of Scientific Research-supported physicists at the University of California, Berkeley in collaboration with researchers from the Max Planck Institute of Quantum Optics and the U.S. Department of Energy's Lawrence Berkeley National Laboratory, became the first researchers to observe the motion of an atom's valence or outermost electrons in real-time by investigating the ejection of an electron from an atom by an intense laser pulse.

In the experiments, an electron in a krypton atom is removed by a laser pulse that lasts less than four femtoseconds (one femtosecond is one millionth of one billionth of a second). This process leaves behind an atom with a pulsating positively charged hole in the valence shell, which originates from electronic wave functions of the atom.

The scientists led by Dr. Steve Leone, an ultrafast laser expert and the recent recipient of a National Security Science and Engineering Faculty Fellowship, used an extreme ultraviolet light pulse, the duration for which was 150 attoseconds (one attosecond is one billionth of one billionth of a second), to capture and photograph the movement of valence electrons for the first time.

This research into electron motions is expected to enable the scientists to better control processes and materials that will improve high-speed electronics and carbon-free energy sources that will benefit both the Air Force and consumers.

"If we want to understand high speed electronics, we need to work on changing molecular bonds in chemical reactions and the movement of electrons during chemical reactions or in complex solids which will only be possible by freezing time in a femtosecond," said Leone.

Dr. Michael R. Berman, program manager at AFOSR who is overseeing the scientists believes their research is an elegant example of the new capabilities of attosecond pulses to probe the dynamics of electron motions.

"This program and instrumentation will open new doors into probing fundamental physical processes on time scales faster than ever probed before."

Berman also noted, "These new tools will let us probe electron dynamics in materials and semiconductors and could help us understand and reduce electron loss processes to make electronics and devices like solar cells more efficient and to bring electronic data processing to its highest level."

ABOUT AFOSR:
The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.

Maria Callier | EurekAlert!
Further information:
http://www.afosr.af.mil

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>