Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists measure current-induced torque in nonvolatile magnetic memory devices

10.03.2011
Tomorrow's nonvolatile memory devices – computer memory that can retain stored information even when not powered – will profoundly change electronics, and Cornell University researchers have discovered a new way of measuring and optimizing their performance.

Using a very fast oscilloscope, researchers led by Dan Ralph, the Horace White Professor of Physics, and Robert Buhrman, the J.E. Sweet Professor of Applied and Engineering Physics, have figured out how to quantify the strength of current-induced torques used to write information in memory devices called magnetic tunnel junctions. The results were published online Feb. 28 in the journal Nature Physics.

Magnetic tunnel junctions are memory storage devices made of a sandwich of two ferromagnets with a nanometers-thick oxide insulator in between. The electrical resistance of the device is different for parallel and nonparallel orientations of the magnetic electrodes, so that these two states create a nonvolatile memory element that doesn't require electricity for storing information. An example of nonvolatile memory today is flash memory, but that is a silicon-based technology subject to wearing out after repeated writing cycles, unlike magnetic memory.

What has held back magnetic memory technology is that it has required magnetic fields to switch the magnetic states – that is, to write information. This limits their size and efficiency because magnetic fields are long-ranged and relatively weak, so that large currents and thick wires are needed to generate a large-enough field to switch the device.

The Cornell researchers are studying a new generation of magnetic devices that can write information without using magnetic fields. Instead, they use a mechanism called "spin torque," which arises from the idea that electrons have a fundamental spin (like a spinning top). When the electrons interact with the magnets in the tunnel junctions, they transfer some of their angular momentum. This can provide a very strong torque per unit current, and has been demonstrated to be at least 500 times more efficient than using magnetic fields to write magnetic information, Ralph said.

To measure these spin torques, the researchers used an oscilloscope in a shared facility operated by Cornell's Center for Nanoscale Systems. They applied torque to the magnetic tunnel junctions using an alternating current and measured the amplitude of resistance oscillations that resulted. Since the resistance depends on the relative orientation of the two magnets in the tunnel junction, the size of the resistance oscillations could be related directly to the amplitude of the magnetic motion, and hence to the size of the torque.

The researchers hope such experiments will help industry make better nonvolatile memory devices by understanding exactly how to structure them, and also, what materials would best be used as the oxide insulators and the ferromagnets surrounding them.

The work was supported by the National Science Foundation, the Army Research Office and the Office of Naval Research, and included collaborators Chen Wang, graduate student and first author; graduate student Yong-Tao Cui; and Jordan A. Katine from Hitachi Global Storage Technologies.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>