Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists make crystal/liquid interface visible for first time

13.08.2009
"Imagine you're a water molecule in a glass of ice water, and you're floating right on the boundary of the ice and the water," proposes Emory University physicist Eric Weeks. "So how do you know if you're a solid or a liquid?"

Weeks' lab recently captured the first images of what's actually happening in this fuzzy area of the crystal/liquid interface. The lab's data, published this week in the Proceedings of the National Academy of Sciences (PNAS), make the waves between the two states of matter visible for the first time.

"The theory that surface waves move along the crystal/liquid boundary – the intrinsic interface – dates back to 1965 and is well established," says Weeks, associate professor of physics. "What we've done is found a way to take a picture of the intrinsic interface, measure it, and show how it fluctuates over time."

The visual evidence shows that the fuzzy region between the two states is extremely narrow, Weeks says. "The transition from completely organized to completely disorganized goes very quickly, spatially." To see the transition, and hear Weeks explain the process, visit: http://esciencecommons.blogspot.com/2009/08/crystal-liquid-interface-visible-for.html

Modeling states of matter

Weeks' lab uses tiny plastic balls, each about the size of a cell nucleus, to model states of matter. Samples of these colloids can be fine-tuned into liquid or crystal states by changing the concentrations of the particles suspended in a solution.

"Water molecules are too small too study while they are fluctuating," Weeks explains. "We used the plastic spheres to resize an experiment to a scale that we could observe. You lose some of the detail when you do this, but you hope it's not the critical detail."

The experiment took a great deal of trial and error, says Jessica Hernández-Guzmán, a graduate student in physics and the lead author of the PNAS article. "I was looking for that transition," she says. "I knew what the colloids looked like in a crystal state, and I knew what they looked like as a liquid, but I didn't know what they looked like in-between. When I finally saw (the transition), I felt like I had won the lottery."

The samples of plastic spheres were confined in wedge-shaped glass slides and loaded onto a confocal microscope turned sideways, so that gravity gradually changed the concentration gradient. Rapid, three-dimensional digital scans were made to record the Brownian motion of the particles over one hour. Algorithms were applied to the images to classify the degree of organization of each of the particles. The particles were then digitally colored: from dark blue for the most crystalline, to dark red for the most liquid. The series of images were stitched together and speeded up, becoming microscopy movies that reveal the action along the crystal/liquid interface.

'The zone of confusion'

"You can watch as the boundary fluctuates," Weeks says. "The yellow area along the bumpy line is liquid, but almost crystal. The light blue area is crystal, but almost liquid. The zone of confusion is less than two particles thick. By looking at the tiniest scale possible, we can see that the fuzzy region between the two areas is much smaller than we previously thought."

The research was funded by the National Science Foundation Faculty Early Career Development (CAREER) Program. Better understanding of the crystal/liquid interface could have industrial applications, such as investigating the use of colloidal crystals as optical switches, Weeks says.

Weeks is used to working in fuzzy territory. He has devoted most of his career to probing the mysteries of substances that cannot be pinned down as a solid, liquid or gas. Referred to as "soft condensed materials," they include everyday substances such as toothpaste, peanut butter, shaving cream, plastic and glass.

Emory University is known for its demanding academics, outstanding undergraduate experience, highly ranked professional schools and state-of-the-art research facilities. Perennially ranked as one of the country's top 20 national universities by U.S. News & World Report, Emory encompasses nine academic divisions as well as the Carlos Museum, The Carter Center, the Yerkes National Primate Research Center and Emory Healthcare, Georgia's largest and most comprehensive health care system.

Beverly Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>