Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists make crystal/liquid interface visible for first time

13.08.2009
"Imagine you're a water molecule in a glass of ice water, and you're floating right on the boundary of the ice and the water," proposes Emory University physicist Eric Weeks. "So how do you know if you're a solid or a liquid?"

Weeks' lab recently captured the first images of what's actually happening in this fuzzy area of the crystal/liquid interface. The lab's data, published this week in the Proceedings of the National Academy of Sciences (PNAS), make the waves between the two states of matter visible for the first time.

"The theory that surface waves move along the crystal/liquid boundary – the intrinsic interface – dates back to 1965 and is well established," says Weeks, associate professor of physics. "What we've done is found a way to take a picture of the intrinsic interface, measure it, and show how it fluctuates over time."

The visual evidence shows that the fuzzy region between the two states is extremely narrow, Weeks says. "The transition from completely organized to completely disorganized goes very quickly, spatially." To see the transition, and hear Weeks explain the process, visit: http://esciencecommons.blogspot.com/2009/08/crystal-liquid-interface-visible-for.html

Modeling states of matter

Weeks' lab uses tiny plastic balls, each about the size of a cell nucleus, to model states of matter. Samples of these colloids can be fine-tuned into liquid or crystal states by changing the concentrations of the particles suspended in a solution.

"Water molecules are too small too study while they are fluctuating," Weeks explains. "We used the plastic spheres to resize an experiment to a scale that we could observe. You lose some of the detail when you do this, but you hope it's not the critical detail."

The experiment took a great deal of trial and error, says Jessica Hernández-Guzmán, a graduate student in physics and the lead author of the PNAS article. "I was looking for that transition," she says. "I knew what the colloids looked like in a crystal state, and I knew what they looked like as a liquid, but I didn't know what they looked like in-between. When I finally saw (the transition), I felt like I had won the lottery."

The samples of plastic spheres were confined in wedge-shaped glass slides and loaded onto a confocal microscope turned sideways, so that gravity gradually changed the concentration gradient. Rapid, three-dimensional digital scans were made to record the Brownian motion of the particles over one hour. Algorithms were applied to the images to classify the degree of organization of each of the particles. The particles were then digitally colored: from dark blue for the most crystalline, to dark red for the most liquid. The series of images were stitched together and speeded up, becoming microscopy movies that reveal the action along the crystal/liquid interface.

'The zone of confusion'

"You can watch as the boundary fluctuates," Weeks says. "The yellow area along the bumpy line is liquid, but almost crystal. The light blue area is crystal, but almost liquid. The zone of confusion is less than two particles thick. By looking at the tiniest scale possible, we can see that the fuzzy region between the two areas is much smaller than we previously thought."

The research was funded by the National Science Foundation Faculty Early Career Development (CAREER) Program. Better understanding of the crystal/liquid interface could have industrial applications, such as investigating the use of colloidal crystals as optical switches, Weeks says.

Weeks is used to working in fuzzy territory. He has devoted most of his career to probing the mysteries of substances that cannot be pinned down as a solid, liquid or gas. Referred to as "soft condensed materials," they include everyday substances such as toothpaste, peanut butter, shaving cream, plastic and glass.

Emory University is known for its demanding academics, outstanding undergraduate experience, highly ranked professional schools and state-of-the-art research facilities. Perennially ranked as one of the country's top 20 national universities by U.S. News & World Report, Emory encompasses nine academic divisions as well as the Carlos Museum, The Carter Center, the Yerkes National Primate Research Center and Emory Healthcare, Georgia's largest and most comprehensive health care system.

Beverly Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>