Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists in Mainz and all around the world cheer the discovery of the Higgs particle

13.07.2012
Success at the world's largest particle accelerator LHC / Experiments involving scientists from Mainz University show first direct evidence of the Higgs boson

The mystery of the origin of matter seems to have been solved. At the middle of last week, CERN, the European Organization for Nuclear Research in Geneva, announced the discovery of a new particle that could be the long sought-after Higgs boson. The particle has a mass of about 126 gigaelectron volts (GeV), roughly that of 126 protons.


The image shows a collision recorded by the ATLAS detector on June 10, 2012 during which a Higgs particle was generated with a high level of probability. This boson immediately decayed to form other elementary particles (muons, represented by red lines). Ill./©: JGU

"Almost half a century has passed since the existence of the Higgs boson was first postulated and now it seems that we at last have the evidence we have been looking for. What we have found perfectly fits the predicted parameters of the Higgs boson," says Professor Dr. Volker Büscher of Johannes Gutenberg University Mainz (JGU).

The Higgs boson is important to our current fundamental theory of physics as it explains why the elementary building blocks of matter have a mass at all. Initial indications that the experiments at the Large Hadron Collider (LHC) were going to lead to a breakthrough were documented in December 2011. "We have since corroborated the recorded signal, and the new data demonstrate with a high level of significance the presence of a Higgs-like particle in the region we expected," explains Büscher.

The new evidence comes from an enormously large volume of data that has been more than doubled since December 2011. According to CERN, the LHC collected more data in the months between April and June 2012 than in the whole of 2011. In addition, the efficiency has been improved to such an extent that it is now much easier to filter out Higgs-like events from the several hundred million particle collisions that occur every second.

The data analyzed by the ATLAS detector, to which the Experimental Particle and Astroparticle Physics (ETAP) working group in Mainz made a significant contribution, found an excess of Higgs-like particles in all of the final states studied. "The rapid and yet careful analysis of the new data required a strong commitment over the recent weeks and months, and so we are especially proud to be able to announce such an exciting finding," says Dr. Christian Schmitt of the ETAP working group.

At the same time, the second large particle detector of the LHC, the Compact Muon Solenoid (CMS), recorded events consistent with those of ATLAS and which matched precisely the footprint of the postulated Higgs boson. "We have been working towards this moment for years and are amazed that the LHC and its experiments have produced such results in only two and a half years after the first proton-proton collision," states Professor Dr. Stefan Tapprogge of the ETAP working group.

The existence of the Higgs boson was predicted in 1964 and it is named after the British physicist Peter Higgs. It is the last piece of the puzzle that has been missing from the Standard Model of physics and its function is to give other elementary particles their mass. According to the theory, the so-called Higgs field extends throughout the entire universe. The mass of individual elementary particles is determined by the extent to which they interact with the Higgs bosons. "The discovery of the Higgs boson represents a milestone in the exploration of the fundamental interactions of elementary particles," states Professor Dr. Matthias Neubert, Professor for Theoretical Elementary Particle Physics and spokesman for the Cluster of Excellence PRISMA at JGU.

On the one hand, the Higgs particle is the last component missing from the Standard Model of particle physics. On the other hand, physicists are struggling to understand the detected mass of the Higgs boson. "Using our theory as it currently stands, the mass of the Higgs boson can only be explained as the result of a random fine-tuning of the physical constants of the universe at a level of accuracy of one in one quadrillion," explains Neubert.

Thus, physicists hope that the "new physics" will provide a more straightforward explanation for the characteristics of the Higgs boson than that derived from the current Standard Model. This new physics is sorely needed to find solutions to a series of yet unresolved problems, as presently only the visible universe is explained, which constitutes just four percent of total matter. "The Standard Model has no explanation for the so-called dark matter, so it does not describe the entire universe – there is a lot that remains to be understood," Büscher summarizes.

The work of the Mainz physicists is integrated in the Cluster of Excellence "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA), which achieved an impressive success in this year’s Excellence Initiative by the German federal and state governments.

Weitere Informationen:

http://www.uni-mainz.de/eng/15513.php - press release ;
http://public.web.cern.ch/ - CERN ;
http://atlas.ch/ - The ATLAS Experiment ;
http://www.uni-mainz.de/eng/14894.php - press release "First hint of the Higgs boson particle" (6 Jan. 2012) ;

http://www.uni-mainz.de/magazin/98_ENG_HTML.php - JGU MAGAZINE: "Higgs boson electrifies Mainz physicists" (27 Dec. 2011)

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>