Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists made crystal lattice from polaritons

20.03.2018

An international research team produced an analog of a solid-body crystal lattice from hybrid photon-electron quasiparticles - polaritons. In the resulting polariton lattice, certain particles' energy does not depend on their speed. At the same time, the lattice's geometry, particle concentration and polarization properties can still be modified. This opens up new perspectives for study of quantum effects and the use of optical computing. Results of the study were published in Physical Review Letters.

A solid body is formed around a crystal lattice formed by atomic nuclei. Lattice geometry may influence the relation between a particle's energy and velocity. Lattices are divided into several kinds according to their geometrical properties,. Some of them, such as the Lieb lattice, have so-called flat bands: a state of particles when they show no energy-velocity relation at all. From a formal standpoint, particles in flat bands have infinite effective mass.


This is an electronic microphotograph of the obtained polariton lattice.

Credit: ITMO University

Flat bands are of great interest for fundamental science. They are used to study superconductors, ferromagnets and other quantum phases in electrons. However, quantum phases can also be observed in light elementary particles - photons. This requires creating an artificial photonic analog of a solid body: a so-called photonic crystal with adjustable geometry. Such conditions enable scientists to observe and manage various quantum properties of particles much easier.

Physicists from ITMO University and University of Sheffield have created a photonic analogue of a Lieb lattice and confirmed that quantum effects in a photonic structure are indeed stronger."Strictly speaking, we were dealing with polaritons rather than photons", explains Dmitry Kryzhanovsky, Senior Researcher at ITMO University and professor at the University of Sheffield.

"This hybrid condition occurs when excited electrons mix with photons. Such hybrid particles interact with each other, much like electrons do in a solid body. We used polaritons to create a crystal lattice and studied their new properties. Now we know how polaritons condense in flat bands, how their interaction breaks the radiation symmetry and how their spin or polarization properties change."

Since polaritons maintain their spin rotation continuously, scientists are now able to observe polarization for a long time. Furthermore, easy control over polariton concentration in the lattice provides more options for precise management of the system.

"From a fundamental viewpoint, polariton crystals are interesting in that they provide a great variety of quantum phases and effects that we cannot study in standard crystals", says Ivan Shelykh, head of the International Laboratory of Photoprocesses in Mesoscopic Systems at ITMO University. "Polarization can serve as an information storage element. All calculations are based on a binary system. There must be 0 and 1, so to implement optical computing we need two corresponding states. Polarization, right and left, with a number of intermediate combinations, is an ideal candidate for quantum-level information processing."

A great contribution to the creation and study of the polariton crystal lattices was made by staff of the University of Sheffield. Professor Maurice Skolnick from Sheffield heads a megagrant project on hybrid states of light together with Ivan Shelykh. "All the experiments were carried out in Sheffield, while theoretical modeling and analysis of the results were done at ITMO University", says Shelykh. "I consider this work a good example of what science should look like. Results of an experiment are incomprehensible when published without any interpretation. Similarly, raw theory using unrealistic parameters is difficult to apply in practice. But here we combined theory with experiment - and we plan to keep doing it this way. Our next goal is to obtain and investigate the topological boundary conditions of such a lattice".

###

Reference: Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling. C.?E. Whittaker et al. Physical Review Letters, Mar. 2, 2018. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.097401

Media Contact

Dmitry Malkov
dvmalkov@corp.ifmo.ru
895-337-75508

 @spbifmo_en

http://en.ifmo.ru/ 

Dmitry Malkov | EurekAlert!

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>