Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists from Johannes Gutenberg University Mainz develop a multifunctional storage device for light

29.07.2009
Monolithic microresonator enables the controlled coupling of light and matter / Publication in Physical Review Letters

Light is intangible and, in addition, it travels at great velocity. Nevertheless, it can be confined to a very small space by controllably inserting light into a microscopic container surrounded by reflective walls. The light will then be stored by continuous reflections and cannot escape.

In the scientific domain, such a small reflective microcavity is termed a microresonator. These microresonators find applications in all areas where the interaction between light and matter shall be enhanced and studied in a controlled manner. An important area of usage is, for example, the laser diode, which has revolutionized telecommunications and optical data storage in the past few decades.

Due to the high velocity of light - in just one second light travels more than seven times around the earth - the number of reflections per second in microresonators reaches up to a few trillion. If, in this situation, the light is to be captured for as little as a millionth of a second, each of the one million reflections that occur during this time may only induce a loss of about one millionth of the light power. An every-day metallic mirror loses a few percent of the light power per reflection and would thus fall short of this requirement by more than a factor of ten thousand.

A further property of microresonators can be explained best through comparison with a string of a musical instrument: akin to the way in which the latter can only vibrate at distinct frequencies which depend on their length, the dimensions of a microresonator determine the specific optical frequencies or colors it can store. However, if, like for the example of a laser, the stored light is to be coupled to atoms, its frequency has to be precisely tuned to the relevant atomic species. The lack of such a possibility of tuning a microresonator is thus a deficiency that impairs many important applications.

At the Johannes Gutenberg University Mainz a team of physicists led by Professor Arno Rauschenbeutel have now for the first time realized a microresonator that combines all the desired properties, i.e., long storage time, small volume, and tunability to arbitrary optical frequencies, in a single monolithic device. As reported by the research team in the current edition of the scientific journal Physical Review Letters, to accomplish this feat, it is enough to heat and stretch a standard glass fiber until it reaches about half the diameter of a human hair and then to create a bulge-shaped structure with the help of a laser. Light within this structure is continually reflected at the surface of the fiber and thus travels in a spiral path around the fiber axis. In doing so, the light cannot escape along the fiber because the diameter of the fiber reduces on either side of the structure.

Similar to the motion of a charged particle stored in a magnetic bottle, i.e., a particular spatially varying magnetic field, the light oscillates back and forth along the fiber between two turning points. For this reason, this novel type of microresonator realized by the physicists in Mainz is referred to as a bottle resonator. Tuning the bottle resonator to a specific optical frequency can be accomplished by simply pulling both ends of the supporting glass fiber. The resulting mechanical tension changes the refractive index of the glass, so that depending on the tension, the round-trip of the light is lengthened or shortened.

Because of its exceptional characteristics and its simple design based on glass-fiber technology, the bottle resonator opens up numerous areas of application. "At Mainz University, we aim to use this novel multifunctional microresonator for coupling minute light fields, consisting of single photons, with single atoms," explains Professor Rauschenbeutel from the QUANTUM, Quantum-, Atom-, and Neutron-Physics-Division at the Institute of Physics of Johannes Gutenberg University in Mainz. "If that were successful, one could realize, for example, a glass fiber based quantum interface between light and matter," according to Rauschenbeutel. This would then be an important contribution towards quantum communication and the future realization of a quantum computer.

Original publication:
M. Pollinger, D. O' Shea, F. Warken, and A. Rauschenbeutel: Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator, in: Phys. Rev. Lett. 103, 053901 (2009), doi: 10.1103/PhysRevLett.103.053901; http://link.aps.org/doi/10.1103/PhysRevLett.103.053901.
Further information:
Professor Dr Arno Rauschenbeutel
Institute of Physics
QUANTUM - Quantum-, Atom-, and Neutron-Physics-Division
Johannes Gutenberg University Mainz
Tel.: +49 6131 39-20203
Fax: +49 6131 39-26979
email: rauschenbeutel@uni-mainz.de

Petra Giegerich | idw
Further information:
http://link.aps.org/doi/10.1103/PhysRevLett.103.053901
http://www.uni-mainz.de

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>