Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists from Johannes Gutenberg University Mainz develop a multifunctional storage device for light

29.07.2009
Monolithic microresonator enables the controlled coupling of light and matter / Publication in Physical Review Letters

Light is intangible and, in addition, it travels at great velocity. Nevertheless, it can be confined to a very small space by controllably inserting light into a microscopic container surrounded by reflective walls. The light will then be stored by continuous reflections and cannot escape.

In the scientific domain, such a small reflective microcavity is termed a microresonator. These microresonators find applications in all areas where the interaction between light and matter shall be enhanced and studied in a controlled manner. An important area of usage is, for example, the laser diode, which has revolutionized telecommunications and optical data storage in the past few decades.

Due to the high velocity of light - in just one second light travels more than seven times around the earth - the number of reflections per second in microresonators reaches up to a few trillion. If, in this situation, the light is to be captured for as little as a millionth of a second, each of the one million reflections that occur during this time may only induce a loss of about one millionth of the light power. An every-day metallic mirror loses a few percent of the light power per reflection and would thus fall short of this requirement by more than a factor of ten thousand.

A further property of microresonators can be explained best through comparison with a string of a musical instrument: akin to the way in which the latter can only vibrate at distinct frequencies which depend on their length, the dimensions of a microresonator determine the specific optical frequencies or colors it can store. However, if, like for the example of a laser, the stored light is to be coupled to atoms, its frequency has to be precisely tuned to the relevant atomic species. The lack of such a possibility of tuning a microresonator is thus a deficiency that impairs many important applications.

At the Johannes Gutenberg University Mainz a team of physicists led by Professor Arno Rauschenbeutel have now for the first time realized a microresonator that combines all the desired properties, i.e., long storage time, small volume, and tunability to arbitrary optical frequencies, in a single monolithic device. As reported by the research team in the current edition of the scientific journal Physical Review Letters, to accomplish this feat, it is enough to heat and stretch a standard glass fiber until it reaches about half the diameter of a human hair and then to create a bulge-shaped structure with the help of a laser. Light within this structure is continually reflected at the surface of the fiber and thus travels in a spiral path around the fiber axis. In doing so, the light cannot escape along the fiber because the diameter of the fiber reduces on either side of the structure.

Similar to the motion of a charged particle stored in a magnetic bottle, i.e., a particular spatially varying magnetic field, the light oscillates back and forth along the fiber between two turning points. For this reason, this novel type of microresonator realized by the physicists in Mainz is referred to as a bottle resonator. Tuning the bottle resonator to a specific optical frequency can be accomplished by simply pulling both ends of the supporting glass fiber. The resulting mechanical tension changes the refractive index of the glass, so that depending on the tension, the round-trip of the light is lengthened or shortened.

Because of its exceptional characteristics and its simple design based on glass-fiber technology, the bottle resonator opens up numerous areas of application. "At Mainz University, we aim to use this novel multifunctional microresonator for coupling minute light fields, consisting of single photons, with single atoms," explains Professor Rauschenbeutel from the QUANTUM, Quantum-, Atom-, and Neutron-Physics-Division at the Institute of Physics of Johannes Gutenberg University in Mainz. "If that were successful, one could realize, for example, a glass fiber based quantum interface between light and matter," according to Rauschenbeutel. This would then be an important contribution towards quantum communication and the future realization of a quantum computer.

Original publication:
M. Pollinger, D. O' Shea, F. Warken, and A. Rauschenbeutel: Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator, in: Phys. Rev. Lett. 103, 053901 (2009), doi: 10.1103/PhysRevLett.103.053901; http://link.aps.org/doi/10.1103/PhysRevLett.103.053901.
Further information:
Professor Dr Arno Rauschenbeutel
Institute of Physics
QUANTUM - Quantum-, Atom-, and Neutron-Physics-Division
Johannes Gutenberg University Mainz
Tel.: +49 6131 39-20203
Fax: +49 6131 39-26979
email: rauschenbeutel@uni-mainz.de

Petra Giegerich | idw
Further information:
http://link.aps.org/doi/10.1103/PhysRevLett.103.053901
http://www.uni-mainz.de

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>