Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists investigate the formation of defects during phase transitions in crystals of ions

12.08.2013
Recent research findings are relevant to a model of matter structure formation tiny fractions of a second after the Big Bang

Research groups at Johannes Gutenberg University Mainz (JGU) and the Physical-Technical Federal Institute (PTB) in Braunschweig, working in collaboration with scientists at the University of Ulm and The Hebrew University of Jerusalem, have been investigating the formation of defects occurring when a Coulomb crystal of ions is driven through a second-order phase transition.

For this purpose, they compressed one-dimensional linear chains of ions at high speeds to form a two-dimensional zigzag structure with a form similar to that of an accordion. This process can lead to the generation of defects in the resultant crystal structure. The probability of such defects forming is determined by the speed of the phase transition. The Kibble-Zurek mechanism, which describes the formation of such defects, is universal as it plays an important role in many physical systems. Among other things, this mechanism is the basis of one theory of how matter was created 10 to the power of minus 30 seconds after the Big Bang. The experiments undertaken in Mainz investigated and analyzed this effect with a hitherto unrivalled precision.

The Mainz research team from the Quantum, Atomic, and Neutron Physics (QUANTUM) work group of the Institute of Physics at Mainz University trapped 16 ions in a Paul trap. In this form of trap, ions are confined to a very small space with the aid of electric fields where they arrange themselves in a sequence like pearls in a necklace. The next step is to drastically reduce the space in which the ions are confined so that the ion chain is compressed and becomes folded to form a zigzag structure. However, the ions can assume a particular zigzag pattern or its mirror-inverted version. If one half of the ion chain takes on a different structure to that of the other half of the ion chain, the two patterns that are the opposite of each other will meet in the middle. Since the two different patterns cannot join perfectly, there will be a defect in the crystal structure right at this point.

Due to the form of the trapping potential, the phase transition first occurs in the center of the ion chain and is then transmitted from the center to the ends of the crystal. If the rate of this transmission is faster than the speed of the exchange of information between two neighboring ions, one of these ions will not be able to orientate itself on the basis of its neighbor's structure and will arrange itself randomly. This is why the probability of such defects occurring is significantly determined by the rate at which the phase transition occurs. The speed can be precisely controlled and varied in ion traps, which allowed the Mainz and Braunschweig researchers to determine the rate at which defects occurred relative to phase transition speed. The experimental findings confirm the hypothetical assumptions on which the Kibble-Zurek mechanism is based at a 2 percent level of significance.

Publications:
S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S.T. Dawkins, U.G. Poschinger, R. Nigmatullin, A. Retzker, M.B. Plenio, F. Schmidt-Kaler, K. Singer¬¬¬
Observation of the Kibble–Zurek scaling law for defect formation in ion crystals
Nature Communications 4, 2290 (2013)
http://www.nature.com/ncomms/2013/130807/ncomms3290/full/ncomms3290.html
[arXiv:1302.5343]
K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T. Burgermeister, D.-M. Meier, K. Kuhlmann, A. Retzker, M.B. Plenio, W.H. Zurek, A. del Campo, T.E. Mehlstäubler
Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals
Nature Communications 4, 2291 (2013)
http://www.nature.com/ncomms/2013/130807/ncomms3291/full/ncomms3291.html
[arXiv:1211.7005]
Image:
www.uni-mainz.de/bilder_presse/08_physik_kibble-zurek-mechanismus.jpg
Diagram of the ion trap employed. The ions are held in place by the electrical fields between the gold-plated electrodes. The image of the ionic crystal with defect has been massively enlarged.

image/©: QUANTUM, JGU

Related links:
http://www.quantenbit.de – "Cold Ions and Experimental Quantum Information" work group
http://www.quantum.physik.uni-mainz.de/index_ENG.php – QUANTUM work group
http://www.quantummetrology.de – Center for Quantum Engineering and Space-Time Research
Further information:
Dipl.-Phys. Stefan Ulm
QUANTUM work group
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-23671
fax +49 6131 39-25179
e-mail: ulmst@uni-mainz.de

Petra Giegerich | idw
Further information:
http://www.quantenbit.de/
http://www.uni-mainz.de/presse/16629_ENG_HTML.php

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>