Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists investigate the formation of defects during phase transitions in crystals of ions

12.08.2013
Recent research findings are relevant to a model of matter structure formation tiny fractions of a second after the Big Bang

Research groups at Johannes Gutenberg University Mainz (JGU) and the Physical-Technical Federal Institute (PTB) in Braunschweig, working in collaboration with scientists at the University of Ulm and The Hebrew University of Jerusalem, have been investigating the formation of defects occurring when a Coulomb crystal of ions is driven through a second-order phase transition.

For this purpose, they compressed one-dimensional linear chains of ions at high speeds to form a two-dimensional zigzag structure with a form similar to that of an accordion. This process can lead to the generation of defects in the resultant crystal structure. The probability of such defects forming is determined by the speed of the phase transition. The Kibble-Zurek mechanism, which describes the formation of such defects, is universal as it plays an important role in many physical systems. Among other things, this mechanism is the basis of one theory of how matter was created 10 to the power of minus 30 seconds after the Big Bang. The experiments undertaken in Mainz investigated and analyzed this effect with a hitherto unrivalled precision.

The Mainz research team from the Quantum, Atomic, and Neutron Physics (QUANTUM) work group of the Institute of Physics at Mainz University trapped 16 ions in a Paul trap. In this form of trap, ions are confined to a very small space with the aid of electric fields where they arrange themselves in a sequence like pearls in a necklace. The next step is to drastically reduce the space in which the ions are confined so that the ion chain is compressed and becomes folded to form a zigzag structure. However, the ions can assume a particular zigzag pattern or its mirror-inverted version. If one half of the ion chain takes on a different structure to that of the other half of the ion chain, the two patterns that are the opposite of each other will meet in the middle. Since the two different patterns cannot join perfectly, there will be a defect in the crystal structure right at this point.

Due to the form of the trapping potential, the phase transition first occurs in the center of the ion chain and is then transmitted from the center to the ends of the crystal. If the rate of this transmission is faster than the speed of the exchange of information between two neighboring ions, one of these ions will not be able to orientate itself on the basis of its neighbor's structure and will arrange itself randomly. This is why the probability of such defects occurring is significantly determined by the rate at which the phase transition occurs. The speed can be precisely controlled and varied in ion traps, which allowed the Mainz and Braunschweig researchers to determine the rate at which defects occurred relative to phase transition speed. The experimental findings confirm the hypothetical assumptions on which the Kibble-Zurek mechanism is based at a 2 percent level of significance.

Publications:
S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S.T. Dawkins, U.G. Poschinger, R. Nigmatullin, A. Retzker, M.B. Plenio, F. Schmidt-Kaler, K. Singer¬¬¬
Observation of the Kibble–Zurek scaling law for defect formation in ion crystals
Nature Communications 4, 2290 (2013)
http://www.nature.com/ncomms/2013/130807/ncomms3290/full/ncomms3290.html
[arXiv:1302.5343]
K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T. Burgermeister, D.-M. Meier, K. Kuhlmann, A. Retzker, M.B. Plenio, W.H. Zurek, A. del Campo, T.E. Mehlstäubler
Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals
Nature Communications 4, 2291 (2013)
http://www.nature.com/ncomms/2013/130807/ncomms3291/full/ncomms3291.html
[arXiv:1211.7005]
Image:
www.uni-mainz.de/bilder_presse/08_physik_kibble-zurek-mechanismus.jpg
Diagram of the ion trap employed. The ions are held in place by the electrical fields between the gold-plated electrodes. The image of the ionic crystal with defect has been massively enlarged.

image/©: QUANTUM, JGU

Related links:
http://www.quantenbit.de – "Cold Ions and Experimental Quantum Information" work group
http://www.quantum.physik.uni-mainz.de/index_ENG.php – QUANTUM work group
http://www.quantummetrology.de – Center for Quantum Engineering and Space-Time Research
Further information:
Dipl.-Phys. Stefan Ulm
QUANTUM work group
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-23671
fax +49 6131 39-25179
e-mail: ulmst@uni-mainz.de

Petra Giegerich | idw
Further information:
http://www.quantenbit.de/
http://www.uni-mainz.de/presse/16629_ENG_HTML.php

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>