Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Hit on Mathematical Description of Superfluid Dynamics

14.06.2011
It has been 100 years since the discovery of superconductivity, a state achieved when mercury was cooled, with the help of liquid helium, to nearly the coldest temperature achievable to form a superfluid that provides no resistance to electrons as they flow through it.

During that century, scientists have struggled to find a precise mathematical explanation of why and how this strange fluid behaves as it does. Liquid helium-4 itself becomes a superfluid when cooled to within a few degrees of absolute zero on the Kelvin scale (minus 273 Celsius or minus 460 Fahrenheit), and the resulting lack of viscosity allows it to seem to defy gravity, flowing up and over the sides of a container.

Now a team led by a University of Washington physicist, using the most powerful supercomputer available for open science, has devised a theoretical framework that explains the real-time behavior of superfluids that are made of fermions – subatomic particles such as electrons, protons and neutrons that are basic building blocks of nature.

Such superfluids are found in neutron stars, which rotate between one and 1,000 times a second. These stars, also called pulsars, have 50 percent greater mass than the sun but are packed so densely that one can occupy an area only about the size of a city such as Seattle, said Aurel Bulgac, a UW physics professor and lead author of a paper in the June 10 edition of Science that details the work.

As a neutron star rotates, the superfluid on the surface behaves quite differently than a liquid would on the surface of the Earth. As the rotational speed increases the fluid opens a series of small vortices. As the vortices assemble into triangular patterns, the triangles build a lattice structure within the superfluid.

“When you reach the correct speed, you’ll create one vortex in the middle,” Bulgac said. “And as you increase the speed, you will increase the number of vortices. But it always occurs in steps.”

Similar behavior can be recreated in a laboratory using a vacuum chamber and a laser beam to create a high-intensity electrical field that will cool a small sample, perhaps 1 million atoms, to temperatures near absolute zero. A “laser spoon” then can stir the superfluid fast enough to create vortices.

In trying to understand the odd behavior, scientists have attempted to devise descriptive equations, as they might to describe the swirling action in a cup of coffee as it is stirred, Bulgac said. But to describe the action in a superfluid made of fermions, a nearly limitless number of equations is needed. Each describes what happens if just one variable – such as velocity, temperature or density – is changed. Because the variables are linked, if one changes others will change as well.

The challenge, Bulgac said, was to formulate the proper mathematical problem and then find a computer that could work through the problem as the number of variable changes reached 1 trillion or more. To reach its solution, the team in the last year used the JaguarPF computer at Oak Ridge National Laboratory in Tennessee, one of the largest supercomputers in the world, for the equivalent of 70 million hours, which would require almost 8,000 years on a single-core personal computer (JaguarPF has nearly a quarter-million cores).

“This tells you the complexity of these calculations and how difficult this is,” he said.

The researchers also found through their calculations that by increasing the speed at which the fluid was stirred, eventually it would lose its superfluid properties – though not as soon as had been previously hypothesized. Video representations of the results of the massive numerical simulations are at http://www.phys.washington.edu/groups/qmbnt/UFG.

The work means that researchers can “to some extent” study the properties of a neutron star using computer simulations, Bulgac said. It also opens new directions of research in cold-atom physics.

“This is a pretty major step forward in studying these dynamic processes,” he said.

Co-authors are Yuan-Lung Luo of the UW, Piotr Magierski of the Warsaw University of Technology in Poland; Kenneth Roche of the Pacific Northwest National Laboratory in Richland, Wash.; and Yongle Yu of China’s State Key Laboratory of Magnetic Resonance, Atomic and Molecular Physics. Magierski and Roche also have affiliate UW physics appointments.

The research was funded by the U.S. Department of Energy, the U.S. National Science Foundation, the Polish Ministry of Science and the Chinese National Science Foundation.

For more information, contact Bulgac at 206-685-2988 or bulgac@phys.washington.edu

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>