Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Find Way to Control Individual Bits in Quantum Computers

08.07.2009
Physicists at the National Institute of Standards and Technology (NIST) have overcome a hurdle in quantum computer development, having devised* a viable way to manipulate a single “bit” in a quantum processor without disturbing the information stored in its neighbors.

The approach, which makes novel use of polarized light to create “effective” magnetic fields, could bring the long-sought computers a step closer to reality.

A great challenge in creating a working quantum computer is maintaining control over the carriers of information, the “switches” in a quantum processor while isolating them from the environment. These quantum bits, or “qubits,” have the uncanny ability to exist in both “on” and “off” positions simultaneously, giving quantum computers the power to solve problems conventional computers find intractable – such as breaking complex cryptographic codes.

One approach to quantum computer development aims to use a single isolated rubidium atom as a qubit. Each such rubidium atom can take on any of eight different energy states, so the design goal is to choose two of these energy states to represent the on and off positions. Ideally, these two states should be completely insensitive to stray magnetic fields that can destroy the qubit’s ability to be simultaneously on and off, ruining calculations. However, choosing such “field-insensitive” states also makes the qubits less sensitive to those magnetic fields used intentionally to select and manipulate them. “It’s a bit of a catch-22,” says NIST’s Nathan Lundblad. “The more sensitive to individual control you make the qubits, the more difficult it becomes to make them work properly.”

To solve the problem of using magnetic fields to control the individual atoms while keeping stray fields at bay, the NIST team used two pairs of energy states within the same atom. Each pair is best suited to a different task: One pair is used as a “memory” qubit for storing information, while the second “working” pair comprises a qubit to be used for computation. While each pair of states is field- insensitive, transitions between the memory and working states are sensitive, and amenable to field control. When a memory qubit needs to perform a computation, a magnetic field can make it change hats. And it can do this without disturbing nearby memory qubits.

The NIST team demonstrated this approach in an array of atoms grouped into pairs, using the technique to address one member of each pair individually. Grouping the atoms into pairs, Lundblad says, allows the team to simplify the problem from selecting one qubit out of many to selecting one out of two – which, as they show in their paper, can be done by creating an effective magnetic field, not with electric current as is ordinarily done, but with a beam of polarized light. The polarized-light technique, which the NIST team developed, can be extended to select specific qubits out of a large group, making it useful for addressing individual qubits in a quantum processor without affecting those nearby. “If a working quantum computer is ever to be built,” Lundblad says, “these problems need to be addressed, and we think we’ve made a good case for how to do it.” But, he adds, the long-term challenge to quantum computing remains: integrating all of the required ingredients into a single apparatus with many qubits.

*N. Lundblad, J.M. Obrecht, I.B. Spielman, and J.V. Porto. Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nature Physics, July 5, 2009.

N. Lundblad | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>