Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists explain why superconductors fail to produce super currents

28.06.2010
When high-temperature superconductors were first announced in the late 1980s, it was thought that they would lead to ultra-efficient magnetic trains and other paradigm-shifting technologies.

That didn't happen. Now, a University of Florida scientist is among a team of physicists to help explain why.

In a paper set to appear Sunday in the online edition of Nature Physics, Peter Hirschfeld, a UF professor of physics, and five other researchers for the first time describe precisely how the atomic-level structural elements of high-temperature ceramic superconductors serve to impede electrical current. Their explanation for how "grain boundaries" separating rows of atoms within superconductors impede current is the first to fit a phenomenon that has helped keep the superconductors from reaching their vaunted potential – and puzzled experimental physicists for more than two decades.

"Nobody understood why it was such a strong effect, or why the current was so limited by these grain boundaries," Hirschfeld said. "And that is what we have explained in this paper."

High-temperature superconducting ceramic wires are composed of rows of atoms arranged slightly askew to each other, as though one piece of graph paper had been melded atop another with the horizontal and vertical lines at less-than-perfect alignment. Lumps of electrical charge build up at the angles where the lines meet, acting like dams to interrupt the flow of electricity.

Hirschfeld and his colleagues' contribution was to conceive and construct a mathematical model that fit these observations "very nicely," he said. "We abstracted a very theoretical model of a single boundary" that can be applied to all such boundaries, he said.

Unfortunately the model does not suggest a way to break down the barriers, although Hirschfeld said it will give researchers a better tool to interpret results of past and future experiments. This gives the team hope that their model could, over time, lead to high-temperature superconductors with less restrictive grain boundaries. That would be a step toward helping the superconductors, which have found limited applications in areas such as powerful research magnets, reach their heralded potential.

Siegfried Graser, the first author of the Nature Physics paper and a faculty member at the University of Augsburg in Germany, did most of his research while he was a postdoctoral associate in Hirschfeld's group at UF. The other authors are at the University of Augsburg and the University of Copenhagen. The research was funded by the U.S. Department of Energy.

Peter Hirschfeld | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>