Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Explain the Collective Motion of Particles Called Fermions

30.03.2012
Fermions exhibit collective behavior in unexpected situations, according to new research in Nature

Some people like company. Others prefer to be alone. The same holds true for the particles that constitute the matter around us: Some, called bosons, like to act in unison with others. Others, called fermions, have a mind of their own.

Different as they are, both species can show "collective" behavior -- an effect similar to the wave at a baseball game, where all spectators carry out the same motion regardless of whether they like each other.

Scientists generally believed that such collective behavior, while commonplace for bosons, only appeared in fermions moving in unison at very long wavelengths. Now, however, collective behavior has been discovered at short wavelengths in one Fermi system, helium-3.

A team led by Professor Eckhard Krotscheck -- a physicist who recently joined the University at Buffalo from the Johannes Kepler University in Linz, Austria -- predicted the existence of the behavior using theoretical tools. Independently, but practically at the same time, a French team observed the collective behavior.

A paper detailing both the theoretical and experimental discoveries appears today in the journal Nature.

Krotscheck said the scientists' success in developing accurate theoretical predictions lay, in part, in the fact that they focused on mathematical tools instead of trying to reproduce experiments.

"Knowing how nature ticks at a microscopic scale, we set out to develop a robust theory that was capable of dealing with a wide range of situations and systems," Krotscheck said. "We demanded that our mathematical description is accurate for both fermions and bosons, in different dimensions, and for both coherent and incoherent excitations. Only after we were done, we looked at experiments."

Krotscheck's colleagues on the study include Henri Godfrin, Matthias Meschke and Ahmad Sultan of the Institut Néel, CNRS, and Université Joseph Fourier in France; Hans-Jochen Lauter of the Institut Laue-Langevin in France and Oak Ridge National Laboratory; and Helga Bohm and Martin Panholzer of the Institute for Theoretical Physics at Johannes Kepler University in Austria. Meschke also belongs to the Low Temperature Laboratory of Aalto University in Finland.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht Liquids on Fibers - Slipping or Flowing?
01.07.2015 | Universität des Saarlandes

nachricht NASA missions monitor a waking black hole
01.07.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>