Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Explain the Collective Motion of Particles Called Fermions

30.03.2012
Fermions exhibit collective behavior in unexpected situations, according to new research in Nature

Some people like company. Others prefer to be alone. The same holds true for the particles that constitute the matter around us: Some, called bosons, like to act in unison with others. Others, called fermions, have a mind of their own.

Different as they are, both species can show "collective" behavior -- an effect similar to the wave at a baseball game, where all spectators carry out the same motion regardless of whether they like each other.

Scientists generally believed that such collective behavior, while commonplace for bosons, only appeared in fermions moving in unison at very long wavelengths. Now, however, collective behavior has been discovered at short wavelengths in one Fermi system, helium-3.

A team led by Professor Eckhard Krotscheck -- a physicist who recently joined the University at Buffalo from the Johannes Kepler University in Linz, Austria -- predicted the existence of the behavior using theoretical tools. Independently, but practically at the same time, a French team observed the collective behavior.

A paper detailing both the theoretical and experimental discoveries appears today in the journal Nature.

Krotscheck said the scientists' success in developing accurate theoretical predictions lay, in part, in the fact that they focused on mathematical tools instead of trying to reproduce experiments.

"Knowing how nature ticks at a microscopic scale, we set out to develop a robust theory that was capable of dealing with a wide range of situations and systems," Krotscheck said. "We demanded that our mathematical description is accurate for both fermions and bosons, in different dimensions, and for both coherent and incoherent excitations. Only after we were done, we looked at experiments."

Krotscheck's colleagues on the study include Henri Godfrin, Matthias Meschke and Ahmad Sultan of the Institut Néel, CNRS, and Université Joseph Fourier in France; Hans-Jochen Lauter of the Institut Laue-Langevin in France and Oak Ridge National Laboratory; and Helga Bohm and Martin Panholzer of the Institute for Theoretical Physics at Johannes Kepler University in Austria. Meschke also belongs to the Low Temperature Laboratory of Aalto University in Finland.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>