Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists discover mechanisms of wrinkle and crumple formation

UMass Amherst physicists have identified a fundamental mechanism by which complex patterns such as wrinkles and crumples emerge spontaneously

Smooth wrinkles and sharply crumpled regions are familiar motifs in biological and synthetic sheets, such as plant leaves and crushed foils, say physicists Benny Davidovitch, Narayanan Menon and colleagues at the University of Massachusetts Amherst, but how a featureless sheet develops a complex shape has long remained elusive.

Now, in a cover story of the journal, Proceedings of the National Academy of Sciences, the physicists report that they have identified a fundamental mechanism by which such complex patterns emerge spontaneously.

Davidovitch says they were inspired and moved toward a solution by thinking about how a familiar birthday balloon, made of two circular mylar foils, wrinkles and crumples (two separate processes). The two foils start flat, but when glued together around their edges and injected with helium gas to create higher-than-atmospheric pressure inside, they spontaneously changes shape to accommodate the gas.

"This simple process leads to a fascinating pattern of wrinkles and crumples that emerge spontaneously near the perimeter of each foil," Davidovitch points out. "What we discovered is an unusual sequence of transitions that underlie this and possibly other types of morphological complexity."

In the laboratory, rather than balloons, the researchers including doctoral student Hunter King, who conducted many of the experiments, and postdoctoral researcher Robert Schroll, who carried out theoretical calculations, used microscopically thin films and a drop of water to model the effects they wished to study. They cut a circle of ultra-thin film from a sheet 10,000 times thinner than a piece of paper, only tens of nanometers thick, and place it flat on the water drop nestled in a circular collar, where surface tension holds it in place.

"We then very, very gently inject more and more water into the bubble, very gradually, so it becomes more and more curved without spilling over," says Davidovitch. "When the radius of the drop gets small enough, the thin film starts to develop fine radial wrinkles near its outer perimeter as the water pressure increases If you keep adding pressure, decreasing the radius further, a second transition takes place and the film starts to crumple and to look more like a table cloth, draping with sharp creases over the edge of a flattened top," he adds.

Watching this process through incremental steps, the researchers were able to observe and describe through mathematical formulas how the drop imposes confinement on circles of latitude of the sheet. "The degree of this confinement increases as the drop's radius decreases, and an unusual sequence of transitions can then be observed," says Davidovitch.

With this work the investigators, who had earlier proposed quantitative predictions of wrinkle patterns in ultra-thin sheets by following the principle that such sheets must be free of compression, confirm their theoretical predictions. The current experiments also suggest that the wrinkle-to-crumple transition reflects a dramatic change called "symmetry breaking" in the distribution of stresses in the sheet, rather than just a further disruption of its symmetric shape, Davidovitch points out.

The researchers are now working on new puzzles regarding the formation of crumpled features posed by the experiment.

Janet Lathrop | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>