Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Discover Important Step for Making Light Crystals

14.04.2009
Ohio State University researchers have developed a new strategy to overcome one of the major obstacles to a grand challenge in physics.

What they’ve discovered could eventually aid high-temperature superconductivity, as well as the development of new high-tech materials.

In 2008, the Defense Advanced Research Projects Agency (DARPA) chose three multi-university teams to tackle an ambitious problem: trap atoms inside a light crystal -- also called an “optical lattice” -- that can simulate exotic materials and answer fundamental questions in physics.

The deadline for the first phase of the challenge -- June 2009 -- is fast approaching, and the teams have been unable to make the atoms cold enough for their experiments to work.

In this week’s online edition of the Proceedings of the National Academy of Sciences, Ohio State university physicist Tin-Lun Ho and doctoral student Qi Zhou present a potential solution.

Their calculations suggest that it’s possible to compress the atoms in an optical lattice until the heat is squeezed out of them -- and into a surrounding pool of ultra-cold Bose-Einstein condensate (BEC), which will absorb the heat and evaporate it away.

“It is absolutely essential to achieve very low temperatures for this program to succeed. All three teams have made much progress, but until now, temperature has been a bottleneck for the whole enterprise,” said Ho, Distinguished Professor of Mathematical and Physical Sciences at Ohio State.

“Ours is the first proposal to show how the temperature can be lowered dramatically. In fact, we believe it can be made much lower that what is considered achievable today.”

A Bose-Einstein Condensate is a collection of atoms cooled with laser light to a temperature just above absolute zero (0 Kelvin, −273 degrees Celsius, or −460 degrees Fahrenheit). The first BEC ever produced was 170 nanokelvin, or 170 billionths of a Kelvin. Researchers have since produced condensates as cold as 500 picokelvin, or 500 trillionths of a Kelvin.

Ho pioneered theoretical studies of BEC. He has made a wide range of contributions in the field, for which he was awarded the 2008 Lars Onsager Prize of the American Physical Society. Recently, he has worked on the physics of cold atoms in optical lattices, and has pointed out the amount of cooling needed to meet the DARPA challenge.

The new method cools the atoms in an optical lattice by literally squeezing the heat out of them and into a surrounding BEC, which acts as a heat sink.

Ho has already shared the cooling method with the three teams in recent DARPA Meetings. The teams are led by the Massachusetts Institute of Technology, Rice University, and the University of Maryland. Each team is approaching the problem a little differently, and Ho is a member of two of the teams: Rice and Maryland.

All are working to create an optical lattice -- a three-dimensional cubic structure made of laser light which contains many smaller cubes, or “cells,” inside it. Each cell in the lattice is supposed to contain one atom.

If the researchers succeed, they will have made an adjustable crystal out of laser light, and will be able to emulate different solid materials.

Physicists think of heat in terms of entropy, or disorder, Ho explained. His cooling method involves boosting the laser intensity to force the atoms into a very orderly arrangement.

The researchers are trying to trap atomic particles called fermions, which have an internal angular momentum called spin. When fermions are hot, they spin chaotically. The hotter the atoms, the more disordered these spins become.

Ho and Zhou discovered that by raising the laser intensity, researchers could compress the fermions into a so-called “band insulator,” where each cell in the lattice contains two fermions instead of one. Each fermion will naturally pair up with one that is spinning in the opposite direction, so that the two spins cancel each other out. This two-fermion state would have no entropy, or heat.

But according to the laws of thermodynamics, the heat has to go somewhere. Ho calculates that it would be pressed outward to the surface of the lattice, where a Bose-Einstein Condensate could absorb it.

After the BEC evaporated away, the researchers could turn down the intensity of the laser, so that the lattice could expand and the atoms could return to their original locations, with one per cell. Only this time, the whole lattice would be much colder than before.

“Effectively, this is a two-part solution -- divide and conquer,” Ho said. “The ‘divide’ part is to push the entropy out of the interior of the system. The ‘conquer’ part is to get rid of the entropy by evaporating away the BEC. Next, we’d like to reduce it to a one-step process, and eliminate the need for the BEC entirely.” Recently, Ho and Zhou have come up with another method which they believe may be even simpler.

Physicists hope that the light crystal will be able to simulate new materials, and perhaps even reveal the key to high-temperature superconductivity. Ho is optimistic that such applications will be achievable in the next decade.

This work was funded by DARPA and by the National Science Foundation.

Contact: Tin-Lun Ho, (614) 292-2046; Ho.6@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>