Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists developed self-propelled droplets that can act as programmable micro-carriers

07.06.2018

In the life sciences, researchers are working to inject drugs or other molecules into a human body using tiny “transport vehicles.” Researchers at the Saarland University and the University of Barcelona have shown in a model system that small emulsion droplets can be used as smart carriers. They have developed a method for producing self-propelled liquid droplets capable of providing spatially and temporally controlled delivery of a “molecular load”. The study was published in “Communications Physics”.

“Using droplets as micro carriers in biomedicine, for example, is a goal that has been pursued already for some time”, says Ralf Seemann, Professor of Experimental Physics at the University of Saarland. However, these droplets could only move passively through the body, for example via the bloodstream.


Development of a Janus droplet: The fluorescent microscope images show water-ethanol droplets in an oil-surfactant mixture with a fluorescent dye (scale bar 100 µm).

Image: Menglin Li, Saarland University

For their current study on active “micro-swimmers”, the physicists from Saarbrücken experimented with a model system that developed from single phase emulsion droplets into so-called Janus droplets: They found that they can actively move and also act as a “smart” carrier for transporting and depositing a cargo.

Janus droplets consist of two different parts: a leading water-rich droplet and a trailing ethanol- and surfactant-rich droplet. The cause of the special abilities of the Janus droplets lies in their formation: they go through a total of three developmental stages, in which different interactions with the environment occur. The researchers were able to use these development steps for “programming” the droplets as active carriers.

“Starting point are homogeneous droplets, which are produced from a water-ethanol mixture. These droplets swim in an oil phase in which a surfactant is dissolved,“ explains Jean-Baptiste Fleury, who is a group leader at the department. In the first development phase, ethanol exits the droplet and dissolves in the surrounding oil phase. This results in different tensions on the surface of the droplets, which cause the so-called Marangoni flow on the surface as well as in the droplet.

“With the Marangoni effect, liquids migrate from a region of low surface tension to a region of high surface tension” explains Martin Brinkmann, who is also part of the research team, the physical principle. “During the first stage, the Marangoni flow pushes the particle forward - an active movement caused by the continual loss of ethanol into the oil phase.” At the same time, surfactants from the oil phase migrate into the drop; because they want to surround themselves preferentially with the ethanol contained therein.

Finally, water and ethanol segregate and small droplets of ethanol-surfactant mixture form in the drop, which quickly merge and, due to the flow within the droplet accumulate at the rear end. At the end of stage two, a characteristic Janus drop has formed. In the following third stage, the surfactants on the surface of the water-rich drop are still “sucked off” by the rear, ethanol-rich drop, and the surface tension at the rear part of the surface is increased.

This gradient causes the liquid on the surface of the front drop to flow into the direction of the higher surface tension and thus sets the entire Janus drop in motion. “In the course of their formation, the Janus droplets exhibit specific driving mechanisms; moreover, they result in different flow fields in the respective stages”, says Dr. Brinkmann.

The researchers from Saarbrücken have precisely explored the motion of these Janus droplets. “We can observe how they move in the experimental cell during their development, which lasts about ten to fifteen minutes, and how they interact differently with obstacles, depending on their evolution stage,” explains Dr. Fleury. The length of the individual stages of development can be controlled by the initial ethanol concentration in the droplet and its size. In order to test their abilities as carriers, the droplets in the experiment were also loaded with DNA molecules as cargo, which accumulate in the ethanol-rich phase.

“Our carrier can selectively walk along obstacles of a specific geometry and surface condition and also deliver its cargo in a targeted manner,” says Prof. Seemann, summing up the results of his work group. Thus, the study describes a first but simple example of a programmable active carrier capable of performing spatially and temporally controlled cargo delivery.

Link to the study: https://www.nature.com/articles/s42005-018-0025-4
(DOI: 10.1038/s42005-018-0025-4)

Contact:
Universität des Saarlandes – Institut für Experimental Physik
Dr. Jean-Baptiste Fleury
Tel.: +49(0) 681 302-71712
E-Mail: jean-baptiste.fleury@physik.uni-saarland.de

Dr. Martin Brinkmann
Tel.: +49(0) 681 302-71700
E-Mail: martin.brinkmann@physik.uni-saarland.de

Prof. Dr. Ralf Seemann
Tel.: +49(0) 681 302-71799
E-Mail: r.seemann@physik.uni-saarland.de

Gerhild Sieber | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

Further reports about: DNA DNA molecules droplet small droplets surface tension

More articles from Physics and Astronomy:

nachricht Sharp images with flexible fibers
07.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Designer materials with completely random structures might enable quantum computing
06.06.2018 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

 
Latest News

Stem-Cell Niche for 10 Billion Colon Cells a Day

07.06.2018 | Life Sciences

Designer materials with completely random structures might enable quantum computing

06.06.2018 | Physics and Astronomy

Parkinson’s: Vitamin B3 has a positive effect on damaged nerve cells

06.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>