Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Detect Process Even Rarer Than the Long-Sought Higgs Particle

17.07.2014

New stringent test of the Standard Model and the mechanism by which the Higgs imparts mass to other particles

Scientists running the ATLAS experiment at the Large Hadron Collider (LHC), the world’s largest and most powerful “atom smasher,” report the first evidence of a process that can be used to test the mechanism by which the recently discovered Higgs particle imparts mass to other fundamental particles.


Courtesy of the ATLAS experiment at the LHC

Candidate event for WW → WW scattering in the ATLAS detector at the Large Hadron Collider.

More rare than the production of the Higgs itself, this process—a scattering of two same-charged particles called W bosons off one another—also provides a new stringent test of the Standard Model of particle physics. The findings, which so far are in agreement with predictions of the Standard Model, are reported in a paper just accepted by Physical Review Letters.

“Only about one in 100 trillion proton-proton collisions would produce one of these events,” said Marc-André Pleier, a physicist at the U.S. Department of Energy’s Brookhaven National Laboratory who played a leadership role in the analysis of this result for the ATLAS collaboration. Complicating matters further, finding one such rare event is not enough.

“You need to observe many to see if the production rate is above or on par with predictions,” Pleier said. “We looked through billions of proton-proton collisions produced at the LHC for a signature of these events—decay products that allow us to infer like Sherlock Holmes what happened in the event.”

The analysis efforts started two years ago and were carried out in particular by groups from Brookhaven, Lawrence Berkeley National Laboratory, Michigan State University, and Technische Universität Dresden, Germany. Preliminary results were presented by Pleier at the “Rencontres de Moriond – QCD and High Energy Interactions” conference in March 2014.

Now finalized based on a total of 34 observed events, the measured interaction rate is in good agreement with that predicted by the Standard Model, a theory describing all known fundamental particles and their interactions.

“The Standard Model has so far survived all tests, but we know that it is incomplete because there are observations of dark matter, dark energy, and the antimatter/matter asymmetry in the universe that can’t be explained by the Standard Model,” Pleier said. So physicists are always looking for new ways to test the theory, to find where and how it might break down.

“This process of W boson interactions is one we could never test,” Pleier said, “because we didn’t have enough energy or large enough data sets needed to see this very rare process—until we built the LHC.”

Now with the LHC data in hand, the measured rate agrees with the prevailing theory’s predictions and establishes a signal at a significance level of 3.6 sigma—strong evidence, according to Pleier. “The probability for this measurement to be a mere background fluctuation is very small—about one in 6000,” he said. But the physicists would like to be more certain by collecting more data to reduce uncertainties and increase the level of significance.

There’s another reason for continuing the quest: “By measuring this process we can check whether the Higgs particle we discovered does its job the way we expect it to,” Pleier said. “A wealth of models in addition to the Higgs mechanism exists to try to explain how fundamental particles get their mass. Measurements of such scattering processes can thus be both a fundamental test of the Standard Model and a window to new physics.”

To test the Higgs mechanism, the scientists compare distributions of decay products of the W scattering process—how often they observe particular products at a particular energy and geometrical configuration.

“It’s like a fingerprint,” Pleier said.“We have a predicted fingerprint and we have the fingerprint we measure. If the fingerprints match, we know that the Higgs does its job of mass generation the way it should. But if it deviates, we know that some other physics mechanism is helping out because the Higgs alone is not doing what we expect.”

Again, so far, the data indicate that the Higgs is working as expected.

“For the first time, we can rule out certain models or predictions that we could not before,” Pleier said. “To complete the job, we need more data, at higher energy, so we can see the fingerprint more clearly.”

The LHC will resume data taking at increased collision energies—13 tera-electronvolts (TeV) instead of 8 TeV—in spring of 2015. The datasets collected will be up to 150 times the size of the currently available data and will allow for a detailed behind-the-scenes look at the Higgs at work.

The ATLAS experiment at LHC is supported by DOE’s Office of Science and the National Science Foundation.

Brookhaven National Laboratory serves as the U.S. host laboratory for the ATLAS experiment at the LHC, and plays multiple roles in this international collaboration, from construction and project management to data storage, distribution, and analysis, funded by the DOE Office of Science (HEP). For more information about Brookhaven’s role, see: http://www.bnl.gov/ATLAS/

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Karen Walsh | newswise
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virtual Reality: 3D Human Body Reconstruction from Fraunhofer HHI digitizes Human Beings

Scientists at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI have developed a method by which the realistic image of a person can be transmitted into a virtual world. The 3D Human Body Reconstruction Technology captures real persons with multiple cameras at the same time and creates naturally moving dynamic 3D models. At this year’s trade fairs IFA in Berlin (Hall 11.1, Booth 3) and IBC in Amsterdam (Hall 8, Booth B80) Fraunhofer HHI will show this new technology.

Fraunhofer HHI researchers have developed a camera system that films people with a perfect three-dimensional impression. The core of this system is a stereo...

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Cancer: Molecularly shutting down cancer cachexia

31.08.2016 | Life Sciences

Robust fuel cell heating unit developed

31.08.2016 | Power and Electrical Engineering

Algorithms Offer Insight into Cellular Development

31.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>