Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Detect Process Even Rarer Than the Long-Sought Higgs Particle

17.07.2014

New stringent test of the Standard Model and the mechanism by which the Higgs imparts mass to other particles

Scientists running the ATLAS experiment at the Large Hadron Collider (LHC), the world’s largest and most powerful “atom smasher,” report the first evidence of a process that can be used to test the mechanism by which the recently discovered Higgs particle imparts mass to other fundamental particles.


Courtesy of the ATLAS experiment at the LHC

Candidate event for WW → WW scattering in the ATLAS detector at the Large Hadron Collider.

More rare than the production of the Higgs itself, this process—a scattering of two same-charged particles called W bosons off one another—also provides a new stringent test of the Standard Model of particle physics. The findings, which so far are in agreement with predictions of the Standard Model, are reported in a paper just accepted by Physical Review Letters.

“Only about one in 100 trillion proton-proton collisions would produce one of these events,” said Marc-André Pleier, a physicist at the U.S. Department of Energy’s Brookhaven National Laboratory who played a leadership role in the analysis of this result for the ATLAS collaboration. Complicating matters further, finding one such rare event is not enough.

“You need to observe many to see if the production rate is above or on par with predictions,” Pleier said. “We looked through billions of proton-proton collisions produced at the LHC for a signature of these events—decay products that allow us to infer like Sherlock Holmes what happened in the event.”

The analysis efforts started two years ago and were carried out in particular by groups from Brookhaven, Lawrence Berkeley National Laboratory, Michigan State University, and Technische Universität Dresden, Germany. Preliminary results were presented by Pleier at the “Rencontres de Moriond – QCD and High Energy Interactions” conference in March 2014.

Now finalized based on a total of 34 observed events, the measured interaction rate is in good agreement with that predicted by the Standard Model, a theory describing all known fundamental particles and their interactions.

“The Standard Model has so far survived all tests, but we know that it is incomplete because there are observations of dark matter, dark energy, and the antimatter/matter asymmetry in the universe that can’t be explained by the Standard Model,” Pleier said. So physicists are always looking for new ways to test the theory, to find where and how it might break down.

“This process of W boson interactions is one we could never test,” Pleier said, “because we didn’t have enough energy or large enough data sets needed to see this very rare process—until we built the LHC.”

Now with the LHC data in hand, the measured rate agrees with the prevailing theory’s predictions and establishes a signal at a significance level of 3.6 sigma—strong evidence, according to Pleier. “The probability for this measurement to be a mere background fluctuation is very small—about one in 6000,” he said. But the physicists would like to be more certain by collecting more data to reduce uncertainties and increase the level of significance.

There’s another reason for continuing the quest: “By measuring this process we can check whether the Higgs particle we discovered does its job the way we expect it to,” Pleier said. “A wealth of models in addition to the Higgs mechanism exists to try to explain how fundamental particles get their mass. Measurements of such scattering processes can thus be both a fundamental test of the Standard Model and a window to new physics.”

To test the Higgs mechanism, the scientists compare distributions of decay products of the W scattering process—how often they observe particular products at a particular energy and geometrical configuration.

“It’s like a fingerprint,” Pleier said.“We have a predicted fingerprint and we have the fingerprint we measure. If the fingerprints match, we know that the Higgs does its job of mass generation the way it should. But if it deviates, we know that some other physics mechanism is helping out because the Higgs alone is not doing what we expect.”

Again, so far, the data indicate that the Higgs is working as expected.

“For the first time, we can rule out certain models or predictions that we could not before,” Pleier said. “To complete the job, we need more data, at higher energy, so we can see the fingerprint more clearly.”

The LHC will resume data taking at increased collision energies—13 tera-electronvolts (TeV) instead of 8 TeV—in spring of 2015. The datasets collected will be up to 150 times the size of the currently available data and will allow for a detailed behind-the-scenes look at the Higgs at work.

The ATLAS experiment at LHC is supported by DOE’s Office of Science and the National Science Foundation.

Brookhaven National Laboratory serves as the U.S. host laboratory for the ATLAS experiment at the LHC, and plays multiple roles in this international collaboration, from construction and project management to data storage, distribution, and analysis, funded by the DOE Office of Science (HEP). For more information about Brookhaven’s role, see: http://www.bnl.gov/ATLAS/

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Karen Walsh | newswise
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht Turning back time by controlling magnetic interactions
30.03.2015 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Theory of the strong interaction verified
27.03.2015 | Forschungszentrum Juelich

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Researchers discover how body's good fat tissue communicates with brain

30.03.2015 | Life Sciences

For drivers with telescopic lenses, driving experience and training affect road test results

30.03.2015 | Health and Medicine

Climate change does not cause extreme winters

30.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>