Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists demonstrate topological superconductivity on palladium dibismuthides


The hunting of the Majorana fermions - particles that are their own antiparticles - in topological superconductors is one of paramount research targets in condensed matter physics today. Recently, a research team led by Professor Qi-Kun Xue of Tsinghua University in China has succeeded to reveal experimental evidence of topological superconductivity near the surface of epitaxial β-Bi2Pd films, and possible Majorana zero modes at magnetic vortices.

A topological superconductor is superconducting inside the bulk like usual superconductors, while on the boundary/surface it harbors the long-sought Majorana fermions. Such unusual particles obey non-Abelian braiding statistics and could be potential for fault-tolerant quantum computing, which can operate much more efficiently than any current computers.

Topological superconductivity and Majorana zero modes of epitaxial β-Bi2Pd films by molecular beam epitaxy. (a) Topographic image of β-Bi2Pd films, with the insert as the schematic crystal structure of β-Bi2Pd. (b) Typical differential conductance dI/dV spectrum at 0.4 K, revealing two distinct superconducting gaps from bulk (Δb) and topological surface (Δs) states, respectively. (c) Zero-bias conductance map, showing an individual magnetic vortex (bright yellow region). (d) Tunneling conductance dI/dV spectrum taken at the vortex center, signifying a salient zero bias conductance peak. (e) The dI/dV spectra acquired at positions with varying radial distance r from the vortex center. The peaks shows no splitting and is invariably fixed to the zero energy, anticipated for Majorana zero modes.

Credit: ©Science China Press

A handful of topological superconductors have hitherto been proposed in topological insulators or other systems with strong spin-orbital coupling when they are interfaced with a superconductor or driven into the superconducting states by chemical doping. However, little attention is paid to the other way of thinking, to wit, searching for topologically nontrivial band structure in classical s-wave superconductors.

Tetragonal β-Bi2Pd was found to be superconducting below 5.4 K in 1957. Just recently, it was revealed from angle-resolved photoemission spectroscopy that topologically protected surface bands cross the Fermi level of β-Bi2Pd.

The two major ingredients of realizing topological superconductivity are coincidently existing in this single-component compound. Subsequent experimental search for the buried topological superconductivity in β-Bi2Pd all fell flat. The researchers in Tsinghua University have caught the rare opportunity and unmasked the veil of topologically nontrivial superconducting states in β-Bi2Pd.

"We are motivated to unravel why the topological superconductivity failed to be observed in all previous studies of β-Bi2Pd crystals, it is now known that tuning the chemical potential to isolate the topological surface states from bulk bands near the Fermi level is the key to observe such topologically nontrivial superconducting states," said Yanfeng Lv, the first author of this study, now is a postdoctoral researcher at Texas Center for Superconductivity, University of Houston.

Published in the journal of Science Bulletin, the study utilized a state-of-the-art molecular beam epitaxy technique under ultrahigh vacuum to prepare successfully high-quality β-Bi2Pd thin films on SrTiO3 substrates, which was then in-situ transferred to a cryogenic scanning tunneling microscopy chamber.

The tunneling spectrum revealed a pronounced and impurity-resistant superconducting gap opening on the surface, which appears much larger than the bulk on owing to Dirac-fermion enhanced parity mixing of surface pair potential. The direct visualization of superconducting gap opening on the topological surface states, as well as its expected variation with the Fermi level, compellingly reveals β-Bi2Pd as a promising candidate for topological superconductor. Salient zero bias conductance peaks, probably from Majorana zero modes supported by such superconducting states, were identified at the end of magnetic vortex lines.

"This research provides the convincing evidence of topological superconductivity on β-Bi2Pd and signature of Majorana zero modes at vortices," said the researchers, "and more importantly points to a novel avenue for searching topological pairing states on usual superconductors that might exhibit topologically nontrivial band structure by the engineering of Fermi level."

This work was financially supported by National Science Foundation, Ministry of Science and Technology and Ministry of Education of China, the National Thousand-Young-Talents Program and the Tsinghua University Initiative Scientific Research Program.

See the article:

Yan-Feng Lv, Wen-Lin Wang, Yi-Min Zhang, Hao Ding, Wei Li, Lili Wang, Ke He, Can-Li Song, Xu-Cun Ma, Qi-Kun Xue. Experimental signature of topological superconductivity and Majorana zero modes on β-Bi2Pd thin films. Science Bulletin 2017, 62(12): 852-856.

Can-Li Song | EurekAlert!

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>