Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists create water tractor beam

11.08.2014

Complex waves generate flow patterns that could be used to manipulate floating objects or explain rips at the beach

Physicists at The Australian National University (ANU) have created a tractor beam on water, providing a radical new technique that could confine oil spills, manipulate floating objects or explain rips at the beach.


Physicists at the Australian National University have created a tractor beam in water. Using a simple wave generator they can create water currents which could be used to confine oil spills, manipulate floating objects or explain rips at the beach.

Credit: ANU Multimedia Team

The group, led by Professor Michael Shats discovered they can control water flow patterns with simple wave generators, enabling them to move floating objects at will.

"We have figured out a way of creating waves that can force a floating object to move against the direction of the wave," said Dr Horst Punzmann, from the Research School of Physics and Engineering, who led the project.

"No one could have guessed this result," he said.

The new technique gives scientists a way of controlling things adrift on water in a way they have never had before, resembling sci-fi tractor beams that draw in objects.

Using a ping-pong ball in a wave tank, the group worked out the size and frequency of the waves required to move the ball in whichever direction they want.

Advanced particle tracking tools, developed by team members Dr Nicolas Francois and Dr Hua Xia, revealed that the waves generate currents on the surface of the water.

"We found that above a certain height, these complex three-dimensional waves generate flow patterns on the surface of the water," Professor Shats said. "The tractor beam is just one of the patterns, they can be inward flows, outward flows or vortices."

The team also experimented with different shaped plungers to generate different swirling flow patterns.

As yet no mathematical theory can explain these experiments, Dr Punzmann said.

"It's one of the great unresolved problems, yet anyone in the bathtub can reproduce it. We were very surprised no one had described it before."

Michael Shats | Eurek Alert!
Further information:
http://www.anu.edu.au

More articles from Physics and Astronomy:

nachricht Tiny Drops of Early Universe 'Perfect' Fluid
02.09.2015 | Brookhaven National Laboratory

nachricht Cosmic recycling
02.09.2015 | European Southern Observatory ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>