Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists close in on a rare particle-decay process

05.06.2012
Underground experiment may unlock mysteries of the neutrino

In the biggest result of its kind in more than ten years, physicists have made the most sensitive measurements yet in a decades-long hunt for a hypothetical and rare process involving the radioactive decay of atomic nuclei.


The Enriched Xenon Observatory 200 (EXO-200) is a neutrino experiment housed 2150 feet below ground in a salt basin at the Waste Isolation Pilot Plant (WIPP). The subterranean location isolates it from cosmic rays and other sources of natural radioactivity. Credit: EXO/WIPP/SLAC


This large copper cylindrical vessel is the Enriched Xenon Observatory 200's (EXO-200) time projection chamber, the part of the detector that contains the liquid xenon, isotopically enriched in xenon-136. The photo shows the chamber being inserted into the cryostat, which keeps the experiment at extremely low temperatures. Credit: EXO

If discovered, the researchers say, this process could have profound implications for how scientists understand the fundamental laws of physics and help solve some of the universe's biggest mysteries—including why there is more matter than antimatter and, therefore, why regular matter like planets, stars, and humans exists at all.

The experiment, the Enriched Xenon Observatory 200 (EXO-200), is an international collaboration that includes the California Institute of Technology (Caltech) and is led by Stanford University and the SLAC National Accelerator Laboratory, a U.S. Department of Energy (DOE) National Laboratory.

The EXO-200 experiment has placed the most stringent constraints yet on the nature of a so-called neutrinoless double beta decay. In doing so, physicists have narrowed down the range of possible masses for the neutrino, a tiny uncharged particle that rarely interacts with anything, passing right through rock, people, and entire planets as it zips along at nearly the speed of light.

The collaboration, consisting of 80 researchers, has submitted a paper describing the results to the journal Physical Review Letters.

In a normal double beta decay, which was first observed in 1986, two neutrons in an unstable atomic nucleus turn into two protons; two electrons and two antineutrinos—the antimatter counterparts of neutrinos—are emitted in the process.

But physicists have suggested that two neutrons could also decay into two protons by emitting two electrons without producing any antineutrinos. "People have been looking for this process for a very long time," says Petr Vogel, senior research associate in physics, emeritus, at Caltech and a member of the EXO-200 team. "It would be a very fundamental discovery if someone actually observes it."

A neutrino is inevitably produced in a single beta decay. Therefore, the two neutrinos that are produced in a neutrinoless double beta decay must somehow cancel each other out. For that to happen, physicists say, a neutrino must be its own antiparticle, allowing one of the two neutrinos to act as an antineutrino and annihilate the other neutrino. That a neutrino can be its own antiparticle is not predicted by the Standard Model—the remarkably successful theory that describes how all elementary particles behave and interact.

If this neutrinoless process does indeed exist, physicists would be forced to revise the Standard Model.

The process also has implications for cosmology and the origin of matter, Vogel says. Right after the Big Bang, the universe had the same amount of matter as antimatter. Somehow, however, that balance was tipped, producing a slight surplus in matter that eventually led to the existence of all of the matter in the universe. The fact that the neutrino can be its own antiparticle might have played a key role in tipping that balance.

In the EXO-200 experiment, physicists monitor a copper cylinder filled with 200 kilograms of liquid xenon-136, an unstable isotope that, theoretically, can undergo neutrinoless double beta decay. Very sensitive detectors line the wall at both ends of the cylinder. To shield it from cosmic rays and other background radiation that may contaminate the signal of such a decay, the apparatus is buried deep underground in the DOE's Waste Isolation Pilot Plant in Carlsbad, New Mexico, where low-level radioactive waste is stored. The physicists then wait to see a signal.

The process, however, is very rare. In a normal double beta decay, half of a given sample would decay after 1021 years—a half-life roughly 100 billion times longer than the time that has elapsed since the Big Bang.

One of the goals of the experiment is to measure the half-life of the neutrinoless process (if it is discovered). In these first results, no signal for a neutrinoless double beta decay was detected in almost seven months' of data—and that non-detection allowed the researchers to rule out possible values for the half-life of the neutrinoless process. Indeed, seven months of finding nothing means that the half-life cannot be shorter than 1.6 × 1025 years, or a quadrillion times older than the age of the universe. With the value of the half-life pinned down, physicists can calculate the mass of a neutrino—another longstanding mystery. The new data suggest that a neutrino cannot be more massive than about 0.140 to 0.380 electron volts (eV, a unit of mass commonly used in particle physics); an electron, by contrast, is about 500,000 eV, or about 9 × 10-31 kilograms.

More than ten years ago, the collaboration behind the Heidelberg-Moscow Double Beta Decay Experiment controversially claimed to have discovered neutrinoless double beta decay using germanium-76 isotopes. But now, the EXO-200 researchers say, their new data makes it highly unlikely that those earlier results were valid.

The EXO-200 experiment, which started taking data last year, will continue its quest for the next several years.

The EXO collaboration involves scientists from SLAC, Stanford, the University of Alabama, Universität Bern, Caltech, Carleton University, Colorado State University, University of Illinois Urbana-Champaign, Indiana University, UC Irvine, Institute for Theoretical and Experimental Physics (Moscow), Laurentian University, the University of Maryland, the University of Massachusetts–Amherst, the University of Seoul, and the Technische Universität München. This research was supported by the DOE and the National Science Foundation in the United States, the Natural Sciences and Engineering Research Council in Canada, the Swiss National Science Foundation, and the Russian Foundation for Basic Research. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

Marcus Woo | EurekAlert!
Further information:
http://www.caltech.edu

Further reports about: Big Bang Caltech Gates Foundation Laboratory Physicists SLAC cosmic ray

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>