Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists build engine consisting of one atom

15.04.2016

World’s smallest heat engine uses just a single particle

An article in the latest edition of the journal Science describes an innovative form of heat engine that operates using only one single atom. The engine is the result of experiments undertaken by the QUANTUM work group at the Institute of Physics of Johannes Gutenberg University Mainz (JGU) in collaboration with theoretical physicists of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).


Part of the laser system used to alternately heat and cool the atom

photo/©: AG Quantum, JGU


View of the vacuum chamber containing the atom trap (center)

photo/©: AG Quantum, JGU

Heat engines have played an important role in shaping society ever since the Industrial Revolution. As in the case of motor vehicle engines, they transform thermal energy into mechanical force, and our modern lifestyle would be impossible without them. At the same time, progress in miniaturization is resulting in the creation of ever smaller devices.

A team of researchers led by Professor Kilian Singer, head of the project at Mainz University and now Professor at the University of Kassel, used a Paul trap to capture a single electrically charged calcium atom. This atom can be heated with the help of electrically-generated noise and cooled by using a laser beam. As a result, the atom is subjected to a thermodynamic cycle. This means that the particle moves back and forth within the trap, thus replicating the stroke of a typical engine. The atom not only acts in the same way as an engine but also stores the energy.

The researchers performed extensive tests to determine the thermodynamic behavior of their engine. They state in their publication that their single particle engine can generate power of 10-22 watts and operates at 0.3 percent efficiency. If the power of the single atom engine was scaled up from the tiny mass of an atom, its output would be equivalent to that of a car engine. “By reversing the cycle, we could even use the device as a single atom refrigerator and employ it to cool nano systems coupled to it,” explained Johannes Roßnagel, first author of the study.

However, the principal objective of this research is that the creation of a nano-engine of this kind provides insight into thermodynamics at the single-particle level, which is currently a very hot topic in research. Plans are afoot to further lower the operating temperature of the engine in order to investigate thermodynamic quantum effects. In theory, it is assumed that the power of a heat engine can be increased by linking it to a quantum heat bath, thus providing a wealth of possibilities that can be used to move beyond the standard accepted boundaries of classical thermodynamics and construct new types of engines.

The project is part of the "Single ion heat engine" project funded through a research grant of the German Research Foundation and received further funding within the "Atomic nano assembler" project funded by the Volkswagen Foundation.

Publication:
Johannes Roßnagel et al.
A single-atom heat engine
Science, 15 April 2016
DOI: 10.1126/science.aad6320

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_ein_atom_motor_01.jpg
View of the vacuum chamber containing the atom trap (center)
photo/©: AG Quantum, JGU

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_ein_atom_motor_02.jpg
Part of the laser system used to alternately heat and cool the atom
photo/©: AG Quantum, JGU

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_ein_atom_motor_03.jpg
(fltr) Professor Kilian Singer (project head), PhD student Johannes Roßnagel, and Professor Ferdinand Schmidt-Kaler (head of the QUANTUM group) in front of the experimental equipment used to create the heat engine in the laboratory at Mainz University
photo/©: AG Quantum, JGU

Further information:
Johannes Roßnagel
Quantum, Atomic, and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-23671
fax +49 6131 39-23428
e-mail: j.rossnagel@uni-mainz.de
http://www.quantenbit.physik.uni-mainz.de/quantum-thermodynamics/

Professor Dr. Kilian Singer
Experimental Physics I / Light-Matter Interaction
Institute of Physics
University of Kassel
Heinrich-Plett-Straße 40
34132 Kassel, GERMANY
phone +49 561 804-4235
fax +49 561 804-4518
e-mail: ks@uni-kassel.de
https://www.uni-kassel.de/fb10/en/institutes/physics/research-groups/light-matte...

Weitere Informationen:

http://www.uni-mainz.de/presse/20212_ENG_HTML.php - press release ;
http://science.sciencemag.org/content/352/6283/325 – Article in Science ;
http://www.uni-mainz.de/presse/17045_ENG_HTML.php – press release "Physicists at Mainz University build plot prototype of a single ion heat engine", Feb. 3, 2014 ;
http://www.sciencemag.org/news/2015/10/scientists-build-heat-engine-single-atom –Science article "Scientists build heat engine from a single atom", Oct. 21, 2015

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>