Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists build engine consisting of one atom

15.04.2016

World’s smallest heat engine uses just a single particle

An article in the latest edition of the journal Science describes an innovative form of heat engine that operates using only one single atom. The engine is the result of experiments undertaken by the QUANTUM work group at the Institute of Physics of Johannes Gutenberg University Mainz (JGU) in collaboration with theoretical physicists of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).


Part of the laser system used to alternately heat and cool the atom

photo/©: AG Quantum, JGU


View of the vacuum chamber containing the atom trap (center)

photo/©: AG Quantum, JGU

Heat engines have played an important role in shaping society ever since the Industrial Revolution. As in the case of motor vehicle engines, they transform thermal energy into mechanical force, and our modern lifestyle would be impossible without them. At the same time, progress in miniaturization is resulting in the creation of ever smaller devices.

A team of researchers led by Professor Kilian Singer, head of the project at Mainz University and now Professor at the University of Kassel, used a Paul trap to capture a single electrically charged calcium atom. This atom can be heated with the help of electrically-generated noise and cooled by using a laser beam. As a result, the atom is subjected to a thermodynamic cycle. This means that the particle moves back and forth within the trap, thus replicating the stroke of a typical engine. The atom not only acts in the same way as an engine but also stores the energy.

The researchers performed extensive tests to determine the thermodynamic behavior of their engine. They state in their publication that their single particle engine can generate power of 10-22 watts and operates at 0.3 percent efficiency. If the power of the single atom engine was scaled up from the tiny mass of an atom, its output would be equivalent to that of a car engine. “By reversing the cycle, we could even use the device as a single atom refrigerator and employ it to cool nano systems coupled to it,” explained Johannes Roßnagel, first author of the study.

However, the principal objective of this research is that the creation of a nano-engine of this kind provides insight into thermodynamics at the single-particle level, which is currently a very hot topic in research. Plans are afoot to further lower the operating temperature of the engine in order to investigate thermodynamic quantum effects. In theory, it is assumed that the power of a heat engine can be increased by linking it to a quantum heat bath, thus providing a wealth of possibilities that can be used to move beyond the standard accepted boundaries of classical thermodynamics and construct new types of engines.

The project is part of the "Single ion heat engine" project funded through a research grant of the German Research Foundation and received further funding within the "Atomic nano assembler" project funded by the Volkswagen Foundation.

Publication:
Johannes Roßnagel et al.
A single-atom heat engine
Science, 15 April 2016
DOI: 10.1126/science.aad6320

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_ein_atom_motor_01.jpg
View of the vacuum chamber containing the atom trap (center)
photo/©: AG Quantum, JGU

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_ein_atom_motor_02.jpg
Part of the laser system used to alternately heat and cool the atom
photo/©: AG Quantum, JGU

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_ein_atom_motor_03.jpg
(fltr) Professor Kilian Singer (project head), PhD student Johannes Roßnagel, and Professor Ferdinand Schmidt-Kaler (head of the QUANTUM group) in front of the experimental equipment used to create the heat engine in the laboratory at Mainz University
photo/©: AG Quantum, JGU

Further information:
Johannes Roßnagel
Quantum, Atomic, and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-23671
fax +49 6131 39-23428
e-mail: j.rossnagel@uni-mainz.de
http://www.quantenbit.physik.uni-mainz.de/quantum-thermodynamics/

Professor Dr. Kilian Singer
Experimental Physics I / Light-Matter Interaction
Institute of Physics
University of Kassel
Heinrich-Plett-Straße 40
34132 Kassel, GERMANY
phone +49 561 804-4235
fax +49 561 804-4518
e-mail: ks@uni-kassel.de
https://www.uni-kassel.de/fb10/en/institutes/physics/research-groups/light-matte...

Weitere Informationen:

http://www.uni-mainz.de/presse/20212_ENG_HTML.php - press release ;
http://science.sciencemag.org/content/352/6283/325 – Article in Science ;
http://www.uni-mainz.de/presse/17045_ENG_HTML.php – press release "Physicists at Mainz University build plot prototype of a single ion heat engine", Feb. 3, 2014 ;
http://www.sciencemag.org/news/2015/10/scientists-build-heat-engine-single-atom –Science article "Scientists build heat engine from a single atom", Oct. 21, 2015

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>