Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Use Black Hole Studies to Measure Photon Mass

27.09.2012
A global team of scientists, including a University of Mississippi physicist, has determined the best constraint on the mass of photons so far, using observations of super-massive black holes.

The research findings appear in the September issue of Physical Review Letters. "Black hole bombs and photon mass bounds" is co-authored by Emanuele Berti, UM assistant professor of physics and astronomy, along with fellow researchers Paolo Pani, Vitor Cardoso, Leonardo Gualtieri and Akihiro Ishibashi.


Illustration by Ana Sousa.

Schematic illustration of the 'black hole bomb' effect. A wave thrown at a black hole can be magnified upon reflection, extracting rotational energy and spinning down the black hole. The mass of the particle acts like a 'wall' for outgoing waves (represented by the enclosing sphere in this figure), so the reflection/amplification process is repeated and causes an instability.

The paper details how the scientists, who work in Portugal, Italy, Japan and the U.S., found a way to use astrophysical observations to test a fundamental aspect of the Standard Model – namely, that photons have no mass – better than anyone before.

"The test works like this: if photons had a mass, they would trigger an instability that would spin down all black holes in the universe," Berti said. "But astronomers tell us that the gigantic, super-massive black holes at galactic centers are spinning, so this instability cannot be too strong.

"The mass of the photon, if it has a mass at all, must be extremely tiny."

"Ultralight photons with nonzero mass would produce a 'black hole bomb': a strong instability that would extract energy from the black hole very quickly," said Pani, the paper's lead author. "The very existence of such particles is constrained by the observation of spinning black holes. With this technique, we have succeeded in constraining the mass of the photon to unprecedented levels: the mass must be one hundred billion of billions times smaller than the present constraint on the neutrino mass, which is about two electron-volts."

The results of this study can be used to investigate the existence of new particles, such as those possibly contributing to the dark matter that is the subject of a search using the Large Hadron Collider at CERN in Geneva. CERN is the site where the breakthrough discovery of the Higgs boson was reported earlier this year.

"That discovery filled one of the most important gaps in our understanding of the standard model of particle physics, because it explains how particles get their mass," Gualtieri said. "However, not all particles have mass. Physics makes progress by testing every nook and cranny of our commonly accepted theories. So, if we believe that a particle has no mass, we'd better test this idea with precise experiments.

"Observations of super-massive black holes may provide new insights which are not accessible in laboratory experiments. This would certainly be exciting. Perhaps these new frontiers in astrophysics will give us a clearer understanding of the microscopic universe."

"Paolo, Vitor, Leonardo and I are all part of an IRSES Network on 'Numerical Relativity and High-Energy Physics' funded by the European Union," Berti said. "Paolo presented a talk on this work at the first meeting of our network that was held in Aveiro, Portugal in July. This network will be used in the next four years to strengthen our collaboration even further."

Pani, who received the Fubini Prize from the Italian National Institute of Nuclear Physics for the best Ph.D. thesis nationwide in 2011, is a post-doctoral researcher at Instituto Superior Técnico in Lisbon, Portugal, supported by a European Marie Curie Fellowship.

"Paolo started working with us when he visited Ole Miss in 2007," Berti said. "We have been working together on this particular project since January 2012, and we have co-authored nine papers so far."

A post-doctorate researcher at UM before returning to his native Portugal, Cardoso is a professor at Instituto Superior Tecnico, where his group is supported by a prestigious European Research Council Starting Grant. Cardoso and Berti have published 37 papers together over the past decade.

"Gualtieri and I were both Ph.D. students under the supervision of Valeria Ferrari in Rome, Italy," Berti said. "We have also been collaborating for more than a decade. Leonardo is now a research professor ('ricercatore') in Rome."

Ishibashi works at the KEK Theory Center and at the Department of Physics of Kinki University in Japan, where physicists at the center are studying in great depth phenomena similar to the one described in the PRL paper.

This study was funded, in part, by National Science Foundation Grant No. PHY-0900735 and by CAREER Grant No. PHY-1055103.

To view the team's PRL paper before publication, go to http://arxiv.org/abs/arXiv:1209.0465 or
http://arxiv.org/abs/arXiv:1209.0773/. A “New Scientist” article featuring their work can be read at

http://www.newscientist.com/article/mg21528824.100-heavy-photons-are-too-light-to-be-behind-dark-matter.html.

For more information about the UM Department of Physics and Astronomy, go to http://www.olemiss.edu/depts/physics_astronomy/.

(edwin smith)

For more news from the University of Mississippi, visit http://news.olemiss.edu/

Edwin Smith | Newswise Science News
Further information:
http://www.olemiss.edu/

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>