Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Use Black Hole Studies to Measure Photon Mass

27.09.2012
A global team of scientists, including a University of Mississippi physicist, has determined the best constraint on the mass of photons so far, using observations of super-massive black holes.

The research findings appear in the September issue of Physical Review Letters. "Black hole bombs and photon mass bounds" is co-authored by Emanuele Berti, UM assistant professor of physics and astronomy, along with fellow researchers Paolo Pani, Vitor Cardoso, Leonardo Gualtieri and Akihiro Ishibashi.


Illustration by Ana Sousa.

Schematic illustration of the 'black hole bomb' effect. A wave thrown at a black hole can be magnified upon reflection, extracting rotational energy and spinning down the black hole. The mass of the particle acts like a 'wall' for outgoing waves (represented by the enclosing sphere in this figure), so the reflection/amplification process is repeated and causes an instability.

The paper details how the scientists, who work in Portugal, Italy, Japan and the U.S., found a way to use astrophysical observations to test a fundamental aspect of the Standard Model – namely, that photons have no mass – better than anyone before.

"The test works like this: if photons had a mass, they would trigger an instability that would spin down all black holes in the universe," Berti said. "But astronomers tell us that the gigantic, super-massive black holes at galactic centers are spinning, so this instability cannot be too strong.

"The mass of the photon, if it has a mass at all, must be extremely tiny."

"Ultralight photons with nonzero mass would produce a 'black hole bomb': a strong instability that would extract energy from the black hole very quickly," said Pani, the paper's lead author. "The very existence of such particles is constrained by the observation of spinning black holes. With this technique, we have succeeded in constraining the mass of the photon to unprecedented levels: the mass must be one hundred billion of billions times smaller than the present constraint on the neutrino mass, which is about two electron-volts."

The results of this study can be used to investigate the existence of new particles, such as those possibly contributing to the dark matter that is the subject of a search using the Large Hadron Collider at CERN in Geneva. CERN is the site where the breakthrough discovery of the Higgs boson was reported earlier this year.

"That discovery filled one of the most important gaps in our understanding of the standard model of particle physics, because it explains how particles get their mass," Gualtieri said. "However, not all particles have mass. Physics makes progress by testing every nook and cranny of our commonly accepted theories. So, if we believe that a particle has no mass, we'd better test this idea with precise experiments.

"Observations of super-massive black holes may provide new insights which are not accessible in laboratory experiments. This would certainly be exciting. Perhaps these new frontiers in astrophysics will give us a clearer understanding of the microscopic universe."

"Paolo, Vitor, Leonardo and I are all part of an IRSES Network on 'Numerical Relativity and High-Energy Physics' funded by the European Union," Berti said. "Paolo presented a talk on this work at the first meeting of our network that was held in Aveiro, Portugal in July. This network will be used in the next four years to strengthen our collaboration even further."

Pani, who received the Fubini Prize from the Italian National Institute of Nuclear Physics for the best Ph.D. thesis nationwide in 2011, is a post-doctoral researcher at Instituto Superior Técnico in Lisbon, Portugal, supported by a European Marie Curie Fellowship.

"Paolo started working with us when he visited Ole Miss in 2007," Berti said. "We have been working together on this particular project since January 2012, and we have co-authored nine papers so far."

A post-doctorate researcher at UM before returning to his native Portugal, Cardoso is a professor at Instituto Superior Tecnico, where his group is supported by a prestigious European Research Council Starting Grant. Cardoso and Berti have published 37 papers together over the past decade.

"Gualtieri and I were both Ph.D. students under the supervision of Valeria Ferrari in Rome, Italy," Berti said. "We have also been collaborating for more than a decade. Leonardo is now a research professor ('ricercatore') in Rome."

Ishibashi works at the KEK Theory Center and at the Department of Physics of Kinki University in Japan, where physicists at the center are studying in great depth phenomena similar to the one described in the PRL paper.

This study was funded, in part, by National Science Foundation Grant No. PHY-0900735 and by CAREER Grant No. PHY-1055103.

To view the team's PRL paper before publication, go to http://arxiv.org/abs/arXiv:1209.0465 or
http://arxiv.org/abs/arXiv:1209.0773/. A “New Scientist” article featuring their work can be read at

http://www.newscientist.com/article/mg21528824.100-heavy-photons-are-too-light-to-be-behind-dark-matter.html.

For more information about the UM Department of Physics and Astronomy, go to http://www.olemiss.edu/depts/physics_astronomy/.

(edwin smith)

For more news from the University of Mississippi, visit http://news.olemiss.edu/

Edwin Smith | Newswise Science News
Further information:
http://www.olemiss.edu/

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>