Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Take an Atomic-Level Peek at Unexpected Behavior in Multilayered Structures

04.11.2013
Researcher finds 'knife' to cut into nanomaterial 'sandwich'

A new class of materials developed at the University of Arkansas may influence the next generation of nano-devices, in which integrated circuits are composed of many layers of dissimilar materials, such as ferromagnetic and superconducting oxides.


University of Arkansas

Cross-sectional image of the multilayer structure on nanoscale

The researchers used innovative cross-sectional scanning tunneling microscopy and spectroscopy at the U.S. Department of Energy’s Argonne Center for Nanoscale Materials to develop the first direct view of the physical and chemical behavior of electrons and atoms at boundary regions within the dissimilar materials.

“The fundamental issue here is that conventional modern day electronics based on silicon is very problematic to operate on a nanometer scale,” said Jak Chakhalian, professor of physics in the J. William Fulbright College of Arts and Sciences at the University of Arkansas. “Integrated circuits have many, many layers of functional material. As layers get thinner, the materials start behaving strangely and often unreliably. Now the question of the size of the interface, where two materials ‘talk’ to each other or influence each other, becomes critical.”

An article detailing the finding, “Visualizing short-range charter transfer at the interfaces between ferromagnetic and superconducting oxides” was published Aug. 13 in the online journal Nature Communications.

Te Yu Chien, a former postdoctoral research associate at the university, developed a technique at the Advanced Photon Source at Argonne to help Chakhalian’s research group with an easy way of looking directly at the interfaces between two dissimilar oxides.

“That was the breakthrough,” Chakhalian said. “He found the ‘knife’ that would cut through the multilayered ‘sandwich.’ Previously, it was extremely difficult, if not impossible, to look inside the layered complex oxide nanomaterial that we had developed here in our lab because they fractured when they were cut.

Chien’s technique provided the researchers with crucial information: Not only do the atomic layers talk to each other, but they also deeply influence each other on a one- to two-nanometer scale.

“We learned that in our materials, the layers strongly influence each other,” Chakhalian said. “For the first time, we showed how electrons and ions interact on the atomic scale in those complex multilayered structures, and it was not what a lot of people expected. This is fantastic. So now we can have beautiful control of these materials on the atomic scale obtained right at the interface, which defines the properties of those materials.”

Chakhalian holds the Charles E. and Clydene Scharlau Endowed Professorship and directs the Laboratory for Artificial Quantum Materials at the University of Arkansas.

The results were obtained by a collaborative effort with John W. Freeland of the Advanced Photon Source and Nathan P. Guisinger of the Center for Nanoscale Materials, both at Argonne National Lab outside Chicago; and Lena F. Kourkoutis and David A. Muller at the Kavli Institute at Cornell for Nanoscale Science in Ithaca, N.Y.

CONTACT:
Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakhal@uark.edu

Chris Branam | Newswise
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>