Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Take an Atomic-Level Peek at Unexpected Behavior in Multilayered Structures

04.11.2013
Researcher finds 'knife' to cut into nanomaterial 'sandwich'

A new class of materials developed at the University of Arkansas may influence the next generation of nano-devices, in which integrated circuits are composed of many layers of dissimilar materials, such as ferromagnetic and superconducting oxides.


University of Arkansas

Cross-sectional image of the multilayer structure on nanoscale

The researchers used innovative cross-sectional scanning tunneling microscopy and spectroscopy at the U.S. Department of Energy’s Argonne Center for Nanoscale Materials to develop the first direct view of the physical and chemical behavior of electrons and atoms at boundary regions within the dissimilar materials.

“The fundamental issue here is that conventional modern day electronics based on silicon is very problematic to operate on a nanometer scale,” said Jak Chakhalian, professor of physics in the J. William Fulbright College of Arts and Sciences at the University of Arkansas. “Integrated circuits have many, many layers of functional material. As layers get thinner, the materials start behaving strangely and often unreliably. Now the question of the size of the interface, where two materials ‘talk’ to each other or influence each other, becomes critical.”

An article detailing the finding, “Visualizing short-range charter transfer at the interfaces between ferromagnetic and superconducting oxides” was published Aug. 13 in the online journal Nature Communications.

Te Yu Chien, a former postdoctoral research associate at the university, developed a technique at the Advanced Photon Source at Argonne to help Chakhalian’s research group with an easy way of looking directly at the interfaces between two dissimilar oxides.

“That was the breakthrough,” Chakhalian said. “He found the ‘knife’ that would cut through the multilayered ‘sandwich.’ Previously, it was extremely difficult, if not impossible, to look inside the layered complex oxide nanomaterial that we had developed here in our lab because they fractured when they were cut.

Chien’s technique provided the researchers with crucial information: Not only do the atomic layers talk to each other, but they also deeply influence each other on a one- to two-nanometer scale.

“We learned that in our materials, the layers strongly influence each other,” Chakhalian said. “For the first time, we showed how electrons and ions interact on the atomic scale in those complex multilayered structures, and it was not what a lot of people expected. This is fantastic. So now we can have beautiful control of these materials on the atomic scale obtained right at the interface, which defines the properties of those materials.”

Chakhalian holds the Charles E. and Clydene Scharlau Endowed Professorship and directs the Laboratory for Artificial Quantum Materials at the University of Arkansas.

The results were obtained by a collaborative effort with John W. Freeland of the Advanced Photon Source and Nathan P. Guisinger of the Center for Nanoscale Materials, both at Argonne National Lab outside Chicago; and Lena F. Kourkoutis and David A. Muller at the Kavli Institute at Cornell for Nanoscale Science in Ithaca, N.Y.

CONTACT:
Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakhal@uark.edu

Chris Branam | Newswise
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>