Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists take new look at the atom

26.01.2011
Measuring the attractive forces between atoms and surfaces with unprecedented precision, University of Arizona physicists have produced data that could refine our understanding of the structure of atoms and improve nanotechnology. The discovery has been published in the journal Physical Review Letters.

Van der Waals forces are fundamental for chemistry, biology and physics. However, they are among the weakest known chemical interactions, so they are notoriously hard to study. This force is so weak that it is hard to notice in everyday life. But delve into the world of micro-machines and nano-robots, and you will feel the force – everywhere.

"If you make your components small enough, eventually this van-der-Waals potential starts to become the dominant interaction," said Vincent Lonij, a graduate student in the UA department of physics who led the research as part of his doctoral thesis.

"If you make tiny, tiny gears for a nano-robot, for example, those gears just stick together and grind to a halt. We want to better understand how this force works."

To study the van-der-Waals force, Lonij and his co-workers Will Holmgren, Cathy Klauss and associate professor of physics Alex Cronin designed a sophisticated experimental setup that can measure the interactions between single atoms and a surface. The physicists take advantage of quantum mechanics, which states that atoms can be studied and described both as particles and as waves.

"We shoot a beam of atoms through a grating, sort of like a micro-scale picket fence," Lonij explained. "As the atoms pass through the grating, they interact with the surface of the grating bars, and we can measure that interaction."

As the atoms pass through the slits in the grating, the van-der-Waals force attracts them to the bars separating the slits. Depending on how strong the interaction, it changes the atom's trajectory, just like a beam of light is bent when it passes through water or a prism.

A wave passing through the middle of the slit does so relatively unencumbered. On the other hand, if an atom wave passes close by the slit's edges, it interacts with the surface and skips a bit ahead, "out of phase," as physicists say.

"After the atoms pass through the grating, we detect how much the waves are out of phase, which tells us how strong the van-der-Waals potential was when the atoms interacted with the surface."

Mysterious as it seems, without the van-der-Waals force, life would be impossible. For example, it helps the proteins that make up our bodies to fold into the complex structures that enable them to go about their highly specialized jobs.

Unlike magnetic attraction, which affects only metals or matter carrying an electric current, van-der-Waals forces make anything stick to anything, provided the two are extremely close to each other. Because the force is so weak, its action doesn't range beyond the scale of atoms – which is precisely the reason why there is no evidence of such a force in our everyday world and why we leave it to physicists such as Lonij to unravel its secrets.

Initially, he was driven simply by curiosity, Lonij said. When he started his project, he didn't know it would lead to a new way of measuring the forces between atoms and surfaces that may change the way physicists think about atoms.

And with a smile, he added, "I thought it would be fitting to study this force, since I am from the Netherlands; Mr. van der Waals was Dutch, too."

In addition to proving that core electrons contribute to the van-der-Waals potential, Lonij and his group made another important discovery.

Physicists around the world who are studying the structure of the atom are striving for benchmarks that enable them to test their theories about how atoms work and interact. "Our measurements of atom-surface potentials can serve as such benchmarks," Lonij explained. "We can now test atomic theory in a new way."

Studying how atoms interact is difficult because they are not simply tiny balls. Instead, they are what physicists call many-body systems. "An atom consists of a whole bunch of other particles, electrons, neutrons, protons, and so forth," Lonij said.

Even though the atom as a whole holds no net electric charge, the different charged particles moving around in its interior are what create the van-der-Waals force in the first place.

"What happens is that the electrons, which hold all the negative charge, and the protons, which hold all the positive charge, are not always in the same places. So you can have tiny little differences in charge that are fluctuating very fast. If you put a charge close to a surface, you induce an image charge. In a highly simplified way, you could say the atom is attracted to its own reflection."

To physicists, who prefer things neat and clean and tractable with razor-sharp mathematics, such a system, made up from many smaller particles zooming around each other, is difficult to pin down. To add to the complication, most surfaces are not clean. As Lonij puts it, "Comparing such a dirty system to theory is a big challenge, but we figured out a way to do it anyway."

"A big criticism of this type of work always was, 'well, you're measuring this atom-surface potential, but you don't know what the surface looks like so you don't know what you're really measuring.'"

To eliminate this problem, Lonij's team used different types of atoms and looked at how each interacted with the same surface.

"Our technique gives you the ratio of potentials directly without ever knowing the potential for either of the two atoms," he said. "When I started five years ago, the uncertainty in these types of measurements was 20 percent. We brought it down to two percent."

The most significant discovery was that an atom's inner electrons, orbiting the nucleus at a closer range than the atom's outer electrons, influence the way the atom interacts with the surface.

"We show that these core electrons contribute to the atom-surface potential," Lonij said, "which was only known in theory until now. This is the first experimental demonstration that core electrons affect atom-surface potentials."

"But what is perhaps more important," he added, "is that you can also turn it around. We now know that the core electrons affect atom-surface potentials. We also know that these core electrons are hard to calculate in atomic theory. So we can use measurements of atom-surface potentials to make the theory better: The theory of the atom."

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>