Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicist finds colder isn't always slower as electron emissions increase at temps down to -452 F

30.04.2010
Science is detective work so it was not unexpected that new questions would follow old ones as Indiana University Bloomington nuclear physicist Hans-Otto Meyer's work progressed on testing a fundamental symmetry of nature that could lead to understanding the matter-antimatter asymmetry in the universe.

At the heart of this search to uncover a violation of time-reversal symmetry by observing a permanent electric dipole moment of the neutron (nEDM) is the $25 million nEDM experiment that Meyer and 60 other researchers from 15 institutes are working on.

But while searching for a non-zero separation of positive and negative charge inside a neutron (the symmetry-violating nEDM), Meyer ran into another mystery scientists have yet to explain.

Working with highly sensitive photomultipliers intended to detect the scintillation light given off during the nEDM experiment as charged particles emerge from reactions between neutrons and a rare isotope of helium, Meyer identified new attributes to a phenomenon called cryogenic electron emission.

In a recent paper in Europhysics Letters (Vol. 89, Issue 5), Meyer presents a thorough experimental investigation of the electron emission rate in the absence of light -- called the dark rate -- in which the rate of electron emission unexpectedly increases as a photomultiplier is cooled to liquid-helium temperature.

Once the temperature hit around -64 F and as it continued down to the lowest temperature measured during the experiment, -452 degrees F, electron emission from the cathode surface of the photomultiplier steadily increased. This is in contrast to the usual behavior of nature where processes tend to slow down as things get colder.

Using two different photomultipliers (denoted by triangles and squares), Meyer found that dark rate electron emission decreased as the temperature (noted above in Kelvin) decreased until about -63.4 F (220 K), when the emission rate then began increasing while temperatures continued dropping to -452 F (4 K).

Meyer saw the electrons being emitted in bursts, noted that the burst duration distribution followed a power law and, as the temperature decreased, that both the rate of bursts and their size increased. Furthermore, he found that while the bursts occurred at random times, that within a given burst the emission of electrons obeyed a peculiar pattern in time.

Scientists have known about cryogenic emission for about 50 years. While other types of spontaneous electron emission without light are understood (thermal or heat, electrical field, and penetrating radiation electron emission), Meyer points out, "at this time, regrettably, a quantitative explanation of the observed characteristics of cryogenic emission is still eluding us."

"Most likely, this observation can eventually be explained within the known laws of physics, but there is always a small chance that we are seeing something new, and that this is a real discovery," he said.

Meyer suggests a trapping mechanism may be at work. How the trap is created and how it fills with or empties itself of electrons might be related to the behavior of traps in semiconductors. One clue pointing to a trap mechanism is the longer intervals between emitted electrons, from about three microseconds apart to three milliseconds apart as a given burst evolved.

A trap would hold electrons until full, then empty some electrons that become dark events measured by the photomultiplier, while others would recombine with an electron hole and thus go undetected. As fewer electrons remained, the release rate would slow.

Retired from teaching duties at the IU College of Arts and Sciences' Department of Physics and having graduated his last student two years ago, Meyer is still active in research at the IU Cyclotron Facility's new Center for Matter and Beams. He estimated continuing the experiment would cost about $500,000.

"I would be very pleased if someone younger would take up this investigation," he said.

And if someone else were to take up this mystery, a semi-retired Meyer has some thoughts on how to proceed.

"Ideally you would want to build an apparatus capable of presenting different surfaces of your choice, like copper, carbon or silicon for example, to an electron multiplier," he said. "The apparatus requires ultra-high vacuum, and the surfaces must be cooled to cryogenic temperatures. Such an experiment will tell us whether these trapping events are present only in semiconductors such as the cathode of a photomultiplier, or are of a more general nature."

To speak with Meyer, please contact Steve Chaplin, University Communications, at 812-856-1896 or stjchap@indiana.edu.

Steve Chaplin | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>