Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicist finds colder isn't always slower as electron emissions increase at temps down to -452 F

30.04.2010
Science is detective work so it was not unexpected that new questions would follow old ones as Indiana University Bloomington nuclear physicist Hans-Otto Meyer's work progressed on testing a fundamental symmetry of nature that could lead to understanding the matter-antimatter asymmetry in the universe.

At the heart of this search to uncover a violation of time-reversal symmetry by observing a permanent electric dipole moment of the neutron (nEDM) is the $25 million nEDM experiment that Meyer and 60 other researchers from 15 institutes are working on.

But while searching for a non-zero separation of positive and negative charge inside a neutron (the symmetry-violating nEDM), Meyer ran into another mystery scientists have yet to explain.

Working with highly sensitive photomultipliers intended to detect the scintillation light given off during the nEDM experiment as charged particles emerge from reactions between neutrons and a rare isotope of helium, Meyer identified new attributes to a phenomenon called cryogenic electron emission.

In a recent paper in Europhysics Letters (Vol. 89, Issue 5), Meyer presents a thorough experimental investigation of the electron emission rate in the absence of light -- called the dark rate -- in which the rate of electron emission unexpectedly increases as a photomultiplier is cooled to liquid-helium temperature.

Once the temperature hit around -64 F and as it continued down to the lowest temperature measured during the experiment, -452 degrees F, electron emission from the cathode surface of the photomultiplier steadily increased. This is in contrast to the usual behavior of nature where processes tend to slow down as things get colder.

Using two different photomultipliers (denoted by triangles and squares), Meyer found that dark rate electron emission decreased as the temperature (noted above in Kelvin) decreased until about -63.4 F (220 K), when the emission rate then began increasing while temperatures continued dropping to -452 F (4 K).

Meyer saw the electrons being emitted in bursts, noted that the burst duration distribution followed a power law and, as the temperature decreased, that both the rate of bursts and their size increased. Furthermore, he found that while the bursts occurred at random times, that within a given burst the emission of electrons obeyed a peculiar pattern in time.

Scientists have known about cryogenic emission for about 50 years. While other types of spontaneous electron emission without light are understood (thermal or heat, electrical field, and penetrating radiation electron emission), Meyer points out, "at this time, regrettably, a quantitative explanation of the observed characteristics of cryogenic emission is still eluding us."

"Most likely, this observation can eventually be explained within the known laws of physics, but there is always a small chance that we are seeing something new, and that this is a real discovery," he said.

Meyer suggests a trapping mechanism may be at work. How the trap is created and how it fills with or empties itself of electrons might be related to the behavior of traps in semiconductors. One clue pointing to a trap mechanism is the longer intervals between emitted electrons, from about three microseconds apart to three milliseconds apart as a given burst evolved.

A trap would hold electrons until full, then empty some electrons that become dark events measured by the photomultiplier, while others would recombine with an electron hole and thus go undetected. As fewer electrons remained, the release rate would slow.

Retired from teaching duties at the IU College of Arts and Sciences' Department of Physics and having graduated his last student two years ago, Meyer is still active in research at the IU Cyclotron Facility's new Center for Matter and Beams. He estimated continuing the experiment would cost about $500,000.

"I would be very pleased if someone younger would take up this investigation," he said.

And if someone else were to take up this mystery, a semi-retired Meyer has some thoughts on how to proceed.

"Ideally you would want to build an apparatus capable of presenting different surfaces of your choice, like copper, carbon or silicon for example, to an electron multiplier," he said. "The apparatus requires ultra-high vacuum, and the surfaces must be cooled to cryogenic temperatures. Such an experiment will tell us whether these trapping events are present only in semiconductors such as the cathode of a photomultiplier, or are of a more general nature."

To speak with Meyer, please contact Steve Chaplin, University Communications, at 812-856-1896 or stjchap@indiana.edu.

Steve Chaplin | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>