Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photovoltaics with Nanotubes

06.11.2012
Researchers of the University of Würzburg are significantly involved in the new European collaborative project POCAONTAS. They intend to develop novel materials for photovoltaics from carbon nanotubes. The project is funded by the European Union with EUR 3.5 million.
The conversion of solar energy into electrical power plays a major role in the successful transition to renewable energy sources. Although conventional silicon solar cells have come to be highly efficient, their production is expensive and consumes a lot of energy. Therefore, it is certainly worthwhile to look for alternatives.

Properties of the material are promising

For this reason, a new research network is going to determine which materials are suitable for the photovoltaics of the future. Tiny tubes of pure carbon that are arranged into larger structures seem to be excellent candidates: "This material has many properties holding considerable promise for a highly efficient energy conversion," says Professor Tobias Hertel of the University of Würzburg.

The material is interesting for photovoltaics due to its great stability and exceptionally high electron mobility. It also has a light absorption spectrum – not easily attainable by any other materials – that is very suitable for energy conversion.

The researcher's objectives

"Although we have been working in the field of organic photovoltaics for years, our first experiments with the high-grade nanotubes didn't fail to thrill and motivate us," recounts Hertel's Würzburg project partner, Professor Vladimir Dyakonov.

The scientists now intend to further explore the photovoltaic potential of carbon nanotube polymer composites. Special focus is put on the development of socalled functional composite systems. The properties of these systems are to be analyzed with cutting-edge spectroscopic methods.

Training of young researchers important

Apart from the research, the training of doctoral students and postdoctoral researchers in science and industry is an essential objective of the project. On their respective location, the project partners offer courses, industrial internships and workshops in order to provide young researchers with expert knowledge and to prepare them for an academic career.

Project partners and coordination

The project is called POCAONTAS (Polymer-Carbon Nanotubes Active Systems for Photovoltaics). Apart from the Würzburg study groups of Professor Tobias Hertel (chemistry) and Professor Vladimir Dyakonov (physics), it includes further research groups from Munich and five other European countries. Several companies, including two from Bavaria, and the Bavarian Research Alliance have also joined in. The project is coordinated by Professor Larry Lüer (Madrid).

Under the "Initial Training Network" program, the European Union will fund the project with altogether EUR 3.5 million over a period of four years, starting from 1 November 2012. According to Professor Hertel, there is a fierce competition for the funds: "Only very few projects that have been recognized as excellent receive such grants."

Contact person

Prof. Dr. Tobias Hertel, Institute of Physical and Theoretical Chemistry of the University of Würzburg, T +49 (0)931 31-86300, tobias.hertel@uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

nachricht Astronomers confirm faintest early-universe galaxy ever seen
24.05.2016 | University of California - Los Angeles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>