Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing Photosynthesis from Space: NASA Scientists Use Satellites to Measure Plant Health

25.07.2013
NASA scientists have established a new way to use satellites to measure what's occurring inside plants at a cellular level.

Plants grow and thrive through photosynthesis, a process that converts sunlight into energy. During photosynthesis, plants emit what is called fluorescence – light invisible to the naked eye but detectable by satellites orbiting hundreds of miles above Earth. NASA scientists have now established a method to turn this satellite data into global maps of the subtle phenomenon in more detail than ever before.


Machinery inside the chloroplasts of plant cells converts sunlight to energy, emitting fluorescence in the process. Scientists can detect the fluorescence fingerprint in satellite data.
Image Credit: NASA Goddard's Conceptual Image Lab/T. Chase

Healthy plants use the energy from sunlight to perform photosynthesis, and re-emit some of that light as a faint but measureable glow. In short, abundant fluorescence indicates active photosynthesis and a well functioning plant, while low or no fluorescence can mean that the plant is stressed or shutting down. Maps of the phenomenon give scientists a direct look at plant health.

The new maps – produced by Joanna Joiner of NASA's Goddard Space Flight Center in Greenbelt, Md., and colleagues – boast a 16-fold increase in spatial resolution and a three-fold increase in temporal resolution over the first proof-of-concept maps released in 2011 from a different satellite instrument. Improved global measurements could have implications for farmers interested in early indications of crop stress and ecologists looking to better understand global vegetation and carbon cycle processes.

"For the first time, we are able to globally map changes in fluorescence over the course of a single month," Joiner said. "This lets us use fluorescence to observe, for example, variation in the length of the growing season."

Vegetation dynamics, including the northward migration of plant growth during the northern hemisphere springtime, is already observed indirectly by satellite data used measure the "greenness" of light reflected from Earth's surface. Fluorescence measurements complement the greenness measurements by providing direct and immediate information about plant productivity. For example, the researchers saw plants start to shut down in the fall before their leaves turned colors. They also clearly detected early plant growth during the warm spring of 2012.

The maps were possible due to the development of a new way to identify the very faint fluorescence signal collected by the Global Ozone Monitoring Instrument 2 (GOME-2) instrument on Metop-A, a European meteorological satellite. Acquiring the measurement is complicated by the fluorescence signal mixing with that of sunlight reflected from Earth's surface and clouds, and the absorption of sunlight by gases in the atmosphere.

To identify fluorescence, Joiner and colleagues took advantage of that fact that each of these signals has its own unique spectral signature akin to a fingerprint – whether from fluorescence, Earth's surface or the atmosphere. Match the fingerprint associated with fluorescence and scientists can tease out that data from the rest of the light.

Detangling the signal from atmospheric influences was a complexity not present in the pioneering research in 2011, when Joiner and colleagues produced the first global maps that proved the concept of measuring global land plant fluorescence from space. That study relied on data from a spectrometer aboard a Japanese satellite called the Greenhouse Gases Observing Satellite (GOSAT). Researchers analyzed an unusually dark section of the infrared portion of the solar spectrum where there is little background light, making it possible to distinguish the faint fluorescence signal.

Despite its complexities, the new method allows for more frequent measurements capable of producing higher resolution maps. Previous observations with GOSAT relied on averaging the data over areas of 200 square kilometers every month. Now, with GOME-2, scientists average the data over areas of just 50 square kilometers about every 10 days. The study was published online for review in April in Atmospheric Measurement Techniques.

"The more precise and more frequent sampling is valuable, allowing us to zoom in on the regions with the highest fluorescence signals," Joiner said. "Our data indicate that agricultural areas in the U.S. Midwest are some of the most productive lands on Earth. We can also now correlate our satellite fluorescence measurements with tower-based observations of carbon dioxide taken up by plants."

The research also paves the path for fluorescence studies based on measurements from future atmospheric or fluorescent-specific observations. Such observations could come from NASA's Orbiting Carbon Observatory-2, a mission designed to measure carbon dioxide that will launch no sooner than July 2014, and the European Space Agency's Fluorescence Explorer mission, which could be selected in 2015 for launch toward the end of the decade.

Kathryn Hansen
NASA's Earth Science News Team

Kathryn Hansen | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>