Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonoic Crystal Biosensors Detect Protein-DNA Interactions

24.09.2008
Scientists at the University of Illinois have developed a new class of disposable, microplate-based optical biosensors capable of detecting protein-DNA interactions.

Based on the properties of photonic crystals, the biosensors are suitable for the rapid identification of inhibitors of protein-nucleic acid and protein-protein interactions.

“Protein-DNA interactions are essential for fundamental cellular processes such as transcription, DNA damage repair and apoptosis,” said Paul Hergenrother, a professor of chemistry and an affiliate of the university’s Institute for Genomic Biology. “Screening for compounds that inhibit particular kinds of protein-DNA binding is a very important step in drug development.”

Developed by Brian Cunningham, a U. of I. professor of electrical and computer engineering, the photonic crystal biosensors consist of a low-refractive-index polymer grating coated with a film of high-refractive-index titanium oxide, attached to the bottom of a standard 384-well microplate. Each well functions as a tiny test tube with a biosensor in the bottom.

“First, we selectively attach a biomolecule, such as DNA, to the bottom of each well. Then we see how that biomolecule interacts with other molecules, including drugs,” said Cunningham, who also is affiliated with the university’s Beckman Institute, Micro and Nanotechnology Laboratory, and Institute for Genomic Biology.

By examining the light reflected from the photonic crystal, the researchers can tell when molecules are added to, or removed from, the crystal surface. The measurement technique can be used, for example, in a high-throughput screening mode to rapidly identify molecules and compounds that prevent DNA-protein binding.

The researchers demonstrated the new technology by examining two very different protein-DNA interactions. The first was the bacterial toxin-antitoxin system MazEF, which binds to DNA in a sequence-specific manner and is thought to be responsible for the maintenance of resistance-encoding plasmids in certain infectious bacteria. The second was the human apoptosis-inducing factor (AIF), a protein that binds to chromosomal DNA in a DNA-sequence-independent manner.

The photonic crystal biosensor technology was further utilized in a screen for inhibitors of the AIF-DNA interaction, and through this screen aurin tricarboxylic acid was identified as the first in vitro inhibitor of AIF.

“Aurin tricarboxylic acid displayed about 80 percent inhibition of AIF-DNA binding,” Hergenrother said. “Aurin tricarboxylic acid was the only compound to exhibit significant inhibition out of approximately 1,000 compounds screened.”

While the photonic crystal biosensor was demonstrated only for protein-DNA interactions, analogous experiments with protein-RNA interactions, and protein-protein interactions are also possible, Cunningham said. “We also could grow cancer cells on the photonic crystal surface, and see how different drugs affect cell growth.”

The researchers describe their work in the journal ACS Chemical Biology. With Cunningham and Hergenrother, the paper’s co-authors are graduate student and lead author Leo Chan, and graduate students Maria Pineda and James Heeres.

The work was funded by the National Institutes of Health.

Editor’s note: To reach Brian Cunningham, call 217-265-6291; bcunning@illinois.edu

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>