Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Better solar cells around the corner

05.09.2011
Design optimization could help maximize the power conversion efficiency of thin-film silicon solar cells

Silicon is readily available, easy to process, highly stable and non-toxic. It is also one of the best materials for making solar cells. The high quality and purity of silicon needed for fabricating the most efficient silicon-based solar cells, however, has made it difficult to lower production costs for this renewable energy technology.

One approach that could reduce costs is to use a microscopically thin film of silicon with a textured surface to enhance light absorption. Navab Singh at the A*STAR Institute of Microelectronics and co-workers have now highlighted several key factors affecting the power conversion efficiency of surface-textured thin-film solar cells and come up with a ‘nanopillar’ design that maximizes light absorption and minimizes production costs.

The best performing thin-film silicon solar cells at present have efficiencies that are about half that of conventional bulk silicon solar cells. “By investigating a variety of appropriate vertical nanopillar designs we can enhance the light-trapping and -collection efficiency of thin films to compensate for the efficiency loss caused by reduced material quality and quantity,” says Singh.

The researchers investigated various factors that might affect the performance of a thin-film solar cell. These factors include the diameter and length of the nanopillar, as well as the spacing between nanopillars (see image). Similarly important is the design of the positively and negatively charged layers in the solar cells that are needed to separate the electrical carriers created by the absorbed light.

The researchers’ simulations showed that the thickness of the negatively charged layer on the outer side of the pillars should be as thin as possible in order to reduce ‘parasitic’ absorption—the annihilation of light-generated carriers before they cross the junction between layers where they would contribute to electrical power generation. They also found that an axial junction design in which the junction between positive and negative layers is confined to the very top of the pillars leads to a higher open-circuit voltage compared with more conventional radial junction structures in which the negative layer wraps around the entire pillars. Yet they found the converse to be true for the open-circuit current.

Singh and his co-workers therefore show that a balance of these factors is needed in order to optimize designs for light-to-power conversion efficiency in surface-textured thin-film structures, which could eventually lead to thin-film silicon solar cells that are able to match the efficiency of the more expensive single-crystalline silicon solar cells.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

References
Wong, S. M. et al. Nanopillar array surface-textured thin-film solar cell with radial p-n junction. IEEE Electron Device Letters 32, 176–178 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6382
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>