Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Double twist

09.06.2011
A silicon waveguide that converts the polarization mode of light could speed up the operation of photonic circuits

Silicon is the dominant material for the fabrication of integrated circuits and is also becoming a popular material for making photonics circuits—miniaturized circuits that use light instead of electronic signals for processing information. One of the challenges in the field, however, has been silicon’s intrinsic sensitivity to the polarization of light, which can limit the rate of information transmission. Jing Zhang, Tsung-Yang Liow and co-workers at the A*STAR Institute of Microelectronics have now developed a novel solution to this problem[1].

Light of different polarizations, which normally travel at the same speed in air, travel at different speeds in silicon waveguides due to random imperfections and asymmetries in the silicon itself. To overcome this problem, the researchers turned to a scheme known as ‘polarization diversity’, by which incoming light is split into two perpendicular modes of polarization, called the transverse electric (TE) and transverse magnetic (TM) modes. They then rotated the TM mode by 90° so that both of the modes propagate in parallel at the same speed inside the photonic circuit.

Zhang, Liow and their co-workers had previously demonstrated a silicon-based device, called a polarization rotator, which comprises the first half of the diversity scheme (see image). The rotator transforms TM light into TE light by passing the light through a horizontal waveguide and then rotating it into a vertical waveguide. In their present work, they designed, built and characterized a device that completes the second half of the scheme. Called a polarization mode converter, it transforms TE light in the vertical waveguide into TE light in a horizontal waveguide. By connecting their mode converter to their rotator, the researchers were able to construct a polarization diversity scheme that provides mode conversion to reduce propagation loss in the waveguide while retaining the original polarization state.

Both halves of the polarization rotation device work by gradually changing the geometry of the waveguide, which in turn changes the polarization mode of the light it is guiding. The Singapore research team characterized their devices by studying the signal loss introduced over the transition length between polarization modes, as well as the propagation loss in the rest of the device. They found that the device efficiencies would need to be improved to be practical, for example by reducing the roughness of the waveguide walls through thermal oxidation, and by improving the coupling between the waveguide and the fiber optic cable connected to it.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Zhang, J., Liow, T.-Y., Yu, M., Lo, G.-Q. & Kwong, D.-L. Silicon waveguide based TE mode converter. Optics Express 18, 25264–25270 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6333
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>