Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Deconstructed nanosensors light the way forward

14.02.2013
A flexible design approach for nanosensors that overcomes practicality and reliability issues is now available
Metal nanostructures can act as tiny antennae to control light since they can focus and guide light on the smallest of scales. The optical properties of these antennae depend strongly on their size and shape, making it difficult to predict which shape to choose for a desired optical effect without relying on complex theoretical calculations. Mohsen Rahmani and co-workers at the A*STAR Data Storage Institute, Singapore, and Imperial College London, UK, have now developed a method that allows for the practical and reliable design of these nano-antennae (1)

Their method is based on new understanding of the optical resonance properties of a few standardized building blocks of the antennae that arise from plasmons — the collective movements of electrons at their surface. “Our novel understanding captures aspects of device design that extend well beyond known optical interference mechanisms and significantly advances our understanding of the plasmonic resonance spectrum. This could bring about new applications,” explains Rahmani.

Some of the most useful properties of plasmonic antennae arise when the metal nanostructures are brought within close proximity to each other. This leads to interference effects near their surface that cause sharp spectral features, known as Fano resonances. Any changes near the nanostructures, such as the introduction of a few molecules or fluctuations in temperature, can impact the sensitive Fano resonances. These changes can be detected and used for sensing applications.

Typically, researchers iteratively use computer models of nanostructures to optimize the design of plasmonic antennae. Rahmani and co-workers simplified the approach by using standardized subunits of nanoparticles called plasmonic oligomers. For example, they deconstructed a cross-shaped structure, consisting of five dots, into two different subunits — one with three dots in a line and one with four outer dots. They then determined the plasmonic resonance of an entire array simply by combining those subunits.

By modeling the properties of the oligomers and comparing their results with measurements of optical spectra, Rahmani observed a systematic dependence of the optical resonances on individual subunits. The team’s findings suggest that the optical properties of various plasmonic antennae can be designed easily from just a few basic building blocks.

"The possible combinations are almost endless and these structures could find many applications," says Rahmani. These range from nanoscale lasers and optical switches for telecommunications to biosensing. “We are now going to develop these oligomers as nanosensing platforms for detecting the adsorption of chemical molecules and protein monolayers.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Rahmani, M., Lei, D. Y., Giannini, V., Lukiyanchuk, B., Ranjbar, M. et al. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Letters 12, 2101–2106 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6626
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>