Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonic wheels : for drag racing at nano scale

31.05.2013
Optical tweezers will soon be more agile than ever before since light beams can now induce a rolling movement onto a nanoscale object, in addition to pushing it along a surface.

Optical tweezers and spanners are about to become more sophisticated. A group of physicists in Germany has just demonstrated, for the first time, the existence of a novel, transverse effect pertaining to light beams used for optical trapping, called photonic wheel.


Photonic wheels : for drag racing at nano scale

This means that scientists will now have full rotational control over the micro- or nanoscale objects trapped in the tweezers’ optical beam. Peter Banzer and colleagues from the Max Planck Institute for the Science of Light, in Erlangen, Germany, just published their findings in the Journal of the European Optical Society Rapid Publications. The authors speculate that, under favourable low viscosity condition, this approach could lead to spinning a trapped particle that will then start moving like a spinning top, as soon as the trapping laser beam is switched off, thus creating the conditions for a nano drag race (see figure).

Due to their lack of mass, photons do not behave intuitively. Rather, they have characteristics of their own. They can be circularly polarised, for example. This means their electric field spins around the propagation axis—a characteristic described as angular momentum, which is parallel to the direction in which the photon travels. This longitudinal angular momentum is akin to that of aircraft propellers, aligned with the direction in which the aircraft travels.

Now, the authors have shown that photons can display purely transverse angular momentum, at a right angle to the direction in which they move. This is similar to the angular momentum of the spinning wheel of a bicycle, whereby the rotational axis is transverse to the direction of movement.

Banzer and colleagues first predicted the new capability theoretically. They then confirmed it through experimental work, using a highly focused light beam with a special polarisation. They used a single metallic nanoparticle to probe the beam in the focal plane. Since there is a measurable deformation of the beam shape in that plane, it proves the existence of a purely transverse angular momentum in the beam for the investigated scheme.

Combining this newly discovered photonic wheel with conventional beams gives full rotational control when manipulating particles. This opens the possibility of new applications such as nanomixers and micromachines in addition to application in quantum optics and nano-optics.

References
P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer and G. Leuchs, The photonic wheel - demonstration of a state of light with purely transverse angular momentum. J. Europ. Opt. Soc. Rap. Public. 8, 13032 (2013). [DOI: http://dx.doi.org/10.2971/jeos.2013.13032]
Weitere Informationen:
https://www.jeos.org/index.php/jeos_rp/article/view/13032/988
http://dx.doi.org/10.2971/jeos.2013.13032
http://www.mpl.mpg.de

Dr. Sabine König | Max-Planck-Institut
Further information:
http://www.mpl.mpg.de

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>