Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Photonic booms may help illuminate astronomical secrets


If you sweep a laser pointer across the Moon fast enough, you can create spots that actually move faster than light. Anyone can do it.

At a meeting of the American Astronomical Society in Seattle, Wash., today, Robert Nemiroff, a physics professor at Michigan Technological University, reported that this theoretical curiosity may turn out to be practically useful out in the cosmos. When a superluminal sweep occurs, it typically starts with a flash that may reveal previously unknown three-dimensional information about the scattering object.

This image depicts Hubble's Variable Nebula.

Credit: William Sparks (STScI), Sylvia Baggett (STScI) et al., & the Hubble Heritage Team (AURA/ STScI/ NASA)

Flashes, dubbed "photonic booms" because they are directly analogous to sonic booms, may be detectable on the Moon, on passing asteroids, on fast moving shadows cast on reflecting dust clouds near variable stars, and on objects illuminated by the rapidly rotating beam of a pulsar, said Nemiroff, author of a study accepted for publication by the Publications of the Astronomical Society of Australia, with a preliminary version available online at "And if detected, we could learn more about all of these objects," said Nemiroff.

"The concept, although not proven in practice, is quite intriguing," said Rosanne Di Stefano, a leading researcher at the Harvard-Smithsonian Center for Astrophysics.

To reveal the size and surface features of asteroids passing near the Earth, a laser beam might be swept across the rock's surface thousands of times a second, with each sweep forcing a harmless but telling photonic boom. The flashes could be recorded with high-speed cameras attached to large telescopes, potentially mapping out major features on the asteroid.

Photonic booms could also be seen much farther out in the universe. An example occurs in Hubble's Variable Nebula in the constellation of Monoceros. There, shadows cast by clouds moving between the bright star "R Mon" and reflecting dust move so fast that they might create photonics booms visible even for days or weeks.

The physics that creates the photonic boom is tied to the faster-than-light sweep speeds of the illuminating spots and cast shadows. Specifically, a flash is seen by an observer when the speed of the scattered spot toward the observer drops from above the speed of light to below the speed of light. The phenomenon is possible only because the spots contain no mass and so cannot only move faster than light, but decelerate past the speed of light without violating Einstein's theory of special relativity.

Details of the effect hinge on the interplay between the time it takes for a sweeping light beam to cross an object, and the time it takes for the light beam to traverse the depth of the object. Therefore, measuring photonic booms gives information about the depth of the scatterer. Were the Moon just a flat disk on the sky, for example, no photonics boom would occur.

"Photonic booms happen around us quite frequently -- but they are always too brief to notice," says Nemiroff. "Out in the cosmos they last long enough to notice -- but nobody has thought to look for them!"

The light flash from a photonic boom is quite different from well-known Cherenkov radiation, light emitted when a charged object breaks the speed of light inside transparent matter, he notes.

Michigan Technological University is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Robert Nemiroff | EurekAlert!

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>